|
|
|
#include <esp_log.h>
|
|
|
|
#include <esp_timer.h>
|
|
|
|
#include "MadgwickAHRS.h"
|
|
|
|
#include "i2c_mutex.h"
|
|
|
|
#include "ugv_comms.hh"
|
|
|
|
#include "ugv_display.hh"
|
|
|
|
#include "ugv_io.hh"
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
namespace ugv {
|
|
|
|
|
|
|
|
using ugv::comms::CommsClass;
|
|
|
|
using ugv::comms::messages::UGV_State;
|
|
|
|
using ugv::io::IOClass;
|
|
|
|
|
|
|
|
static const char *TAG = "ugv_main";
|
|
|
|
|
|
|
|
extern "C" {
|
|
|
|
SemaphoreHandle_t i2c_mutex;
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr uint64_t LOOP_PERIOD_US = 1e6 / 100;
|
|
|
|
static const float PI =
|
|
|
|
3.1415926535897932384626433832795028841971693993751058209749445923078164062;
|
|
|
|
|
|
|
|
extern "C" void OnTimeout(void *arg);
|
|
|
|
|
|
|
|
void UpdateLocationFromGPS(comms::messages::Location &location,
|
|
|
|
const io::GpsData & gps_data) {
|
|
|
|
location.set_fix_quality(gps_data.fix_quality);
|
|
|
|
location.set_latitude(gps_data.latitude);
|
|
|
|
location.set_longitude(gps_data.longitude);
|
|
|
|
location.set_altitude(gps_data.altitude);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const float RAD_PER_DEG = PI / 180.f;
|
|
|
|
// Radius of earth in meters
|
|
|
|
static const float EARTH_RAD = 6372795.f;
|
|
|
|
|
|
|
|
static const float DRIVE_POWER = 0.5;
|
|
|
|
static const float ANGLE_P = 0.02;
|
|
|
|
static const float MIN_DIST = 10.0;
|
|
|
|
|
|
|
|
struct LatLong {
|
|
|
|
public:
|
|
|
|
float latitude;
|
|
|
|
float longitude;
|
|
|
|
|
|
|
|
inline LatLong(double latitude_, double longitude_)
|
|
|
|
: latitude(latitude_), longitude(longitude_) {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return distance from this LatLong to target, in meters
|
|
|
|
*/
|
|
|
|
float distance_to(const LatLong &target) const {
|
|
|
|
float lat1 = latitude * RAD_PER_DEG;
|
|
|
|
float lat2 = target.latitude * RAD_PER_DEG;
|
|
|
|
float long1 = longitude * RAD_PER_DEG;
|
|
|
|
float long2 = target.longitude * RAD_PER_DEG;
|
|
|
|
float clat1 = cosf(lat1);
|
|
|
|
float clat2 = cosf(lat2);
|
|
|
|
float a = powf(sinf((long2 - long1) / 2.f), 2.f) * clat1 * clat2 +
|
|
|
|
powf(sinf((lat2 - lat1) / 2.f), 2.f);
|
|
|
|
float d_over_r = 2 * atan2f(sqrtf(a), sqrtf(1 - a));
|
|
|
|
return d_over_r * EARTH_RAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
float bearing_toward(const LatLong &target) const {
|
|
|
|
float dlong = (target.longitude - longitude) * RAD_PER_DEG;
|
|
|
|
float sdlong = sinf(dlong);
|
|
|
|
float cdlong = cosf(dlong);
|
|
|
|
float lat1 = latitude * RAD_PER_DEG;
|
|
|
|
float lat2 = target.latitude * RAD_PER_DEG;
|
|
|
|
float slat1 = sinf(lat1);
|
|
|
|
float clat1 = cosf(lat1);
|
|
|
|
float slat2 = sinf(lat2);
|
|
|
|
float clat2 = cosf(lat2);
|
|
|
|
float num = sdlong * clat2;
|
|
|
|
float denom = (clat1 * slat2) - (slat1 * clat2 * cdlong);
|
|
|
|
float course = atan2f(num, denom);
|
|
|
|
if (course < 0.0) {
|
|
|
|
course += 2 * PI;
|
|
|
|
}
|
|
|
|
return course / RAD_PER_DEG;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct State {
|
|
|
|
public:
|
|
|
|
CommsClass * comms;
|
|
|
|
IOClass * io;
|
|
|
|
DisplayClass * display;
|
|
|
|
esp_timer_handle_t timer_handle;
|
|
|
|
io::Inputs inputs;
|
|
|
|
io::Outputs outputs;
|
|
|
|
int64_t last_print;
|
|
|
|
Madgwick ahrs_;
|
|
|
|
LatLong target;
|
|
|
|
|
|
|
|
State() : target{34.069022, -118.443067} {
|
|
|
|
comms = new CommsClass();
|
|
|
|
io = new IOClass();
|
|
|
|
display = new DisplayClass(comms);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Init() {
|
|
|
|
esp_timer_init();
|
|
|
|
i2c_mutex = xSemaphoreCreateMutex();
|
|
|
|
|
|
|
|
ahrs_.begin(1000000.f /
|
|
|
|
static_cast<float>(LOOP_PERIOD_US)); // rough sample frequency
|
|
|
|
|
|
|
|
io->Init();
|
|
|
|
comms->Init();
|
|
|
|
display->Init();
|
|
|
|
|
|
|
|
esp_timer_create_args_t timer_args;
|
|
|
|
timer_args.callback = OnTimeout;
|
|
|
|
timer_args.arg = this;
|
|
|
|
timer_args.dispatch_method = ESP_TIMER_TASK;
|
|
|
|
timer_args.name = "ugv_main_loop";
|
|
|
|
esp_timer_create(&timer_args, &this->timer_handle);
|
|
|
|
esp_timer_start_periodic(timer_handle, LOOP_PERIOD_US);
|
|
|
|
last_print = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OnTick() {
|
|
|
|
ESP_LOGV(TAG, "OnTick");
|
|
|
|
int64_t time_us = esp_timer_get_time();
|
|
|
|
float time_s = ((float)time_us) / 1e6;
|
|
|
|
io->ReadInputs(inputs);
|
|
|
|
{
|
|
|
|
io::Vec3f &g = inputs.mpu.gyro_rate, &a = inputs.mpu.accel,
|
|
|
|
&m = inputs.mpu.mag;
|
|
|
|
ahrs_.update(g.x, g.y, g.z, a.x, a.y, a.z, m.x, m.y, m.z);
|
|
|
|
}
|
|
|
|
if (time_us >= last_print + 500 * 1000) { // 1s
|
|
|
|
ESP_LOGD(TAG,
|
|
|
|
"inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)",
|
|
|
|
inputs.mpu.accel.x, inputs.mpu.accel.y, inputs.mpu.accel.z,
|
|
|
|
inputs.mpu.gyro_rate.x, inputs.mpu.gyro_rate.y,
|
|
|
|
inputs.mpu.gyro_rate.z, inputs.mpu.mag.x, inputs.mpu.mag.y,
|
|
|
|
inputs.mpu.mag.z);
|
|
|
|
ESP_LOGD(TAG, "ahrs: yaw=%f, pitch=%f, roll=%f", ahrs_.getYaw(),
|
|
|
|
ahrs_.getPitch(), ahrs_.getRoll());
|
|
|
|
last_print = time_us;
|
|
|
|
}
|
|
|
|
|
|
|
|
comms->Lock();
|
|
|
|
UpdateLocationFromGPS(comms->location, inputs.gps);
|
|
|
|
UGV_State ugv_state = comms->ugv_state;
|
|
|
|
comms->Unlock();
|
|
|
|
|
|
|
|
switch (ugv_state) {
|
|
|
|
default:
|
|
|
|
ESP_LOGW(TAG, "unhandled state: %d", ugv_state);
|
|
|
|
// fall through
|
|
|
|
case UGV_State::STATE_IDLE:
|
|
|
|
case UGV_State::STATE_FINISHED:
|
|
|
|
outputs.left_motor = 0.0;
|
|
|
|
outputs.right_motor = 0.0;
|
|
|
|
break;
|
|
|
|
case UGV_State::STATE_AQUIRING: {
|
|
|
|
TickType_t current_tick = xTaskGetTickCount();
|
|
|
|
TickType_t ticks_since_gps = current_tick - inputs.gps.last_update;
|
|
|
|
bool not_old = ticks_since_gps <= pdMS_TO_TICKS(2000);
|
|
|
|
bool not_invalid = inputs.gps.fix_quality != io::GPS_FIX_INVALID;
|
|
|
|
outputs.left_motor = 0.0;
|
|
|
|
outputs.right_motor = 0.0;
|
|
|
|
if (not_old && not_invalid) {
|
|
|
|
comms->ugv_state = UGV_State::STATE_DRIVING;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UGV_State::STATE_DRIVING: {
|
|
|
|
LatLong current_pos = {inputs.gps.latitude, inputs.gps.longitude};
|
|
|
|
float tgt_dist = current_pos.distance_to(target);
|
|
|
|
|
|
|
|
if (tgt_dist <= MIN_DIST) {
|
|
|
|
ESP_LOGI(TAG, "Finished driving to target");
|
|
|
|
comms->ugv_state = UGV_State::STATE_FINISHED;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
float tgt_bearing = current_pos.bearing_toward(target);
|
|
|
|
float cur_bearing = ahrs_.getYaw();
|
|
|
|
float angle_delta = tgt_bearing - cur_bearing;
|
|
|
|
if (angle_delta < 180.f) angle_delta += 360.f;
|
|
|
|
if (angle_delta > 180.f) angle_delta -= 360.f;
|
|
|
|
float angle_pwr = angle_delta * ANGLE_P;
|
|
|
|
|
|
|
|
outputs.left_motor = DRIVE_POWER + angle_pwr;
|
|
|
|
outputs.right_motor = DRIVE_POWER - angle_pwr;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case UGV_State::STATE_TEST:
|
|
|
|
outputs.left_motor = sinf(time_s * PI);
|
|
|
|
outputs.right_motor = cosf(time_s * PI);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
io->WriteOutputs(outputs);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
extern "C" void OnTimeout(void *arg) {
|
|
|
|
State *state = (State *)arg;
|
|
|
|
state->OnTick();
|
|
|
|
}
|
|
|
|
|
|
|
|
State *state;
|
|
|
|
|
|
|
|
void Setup(void) {
|
|
|
|
ESP_LOGI(TAG, "Starting UAS UGV");
|
|
|
|
state = new State();
|
|
|
|
state->Init();
|
|
|
|
ESP_LOGI(TAG, "Setup finished");
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace ugv
|
|
|
|
|
|
|
|
extern "C" void app_main() { ugv::Setup(); }
|