You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1021 lines
28 KiB

/*
Clock for the STM32L031
EXTI line
17 RTC alarm
19 RTC tamper & timestamp & CSS_LSE
20 RTC wakeup timer
PA0 TAMP2 Button
PA2 TAMP3 Button
__enable_irq();
__disable_irq();
*/
#include <stdint.h>
#include <stddef.h>
#include "stm32l031xx.h"
#include "delay.h"
#include "u8g2.h"
//#include "rtc.h"
#include "key.h"
#include "gui.h"
/*=======================================================================*/
/* Configuration */
/* Note: 50ms systick */
/* delay until other another button press is accepted */
/* time is in systicks (50ms) */
#define TAMPER_SYSTICK_DELAY 22
/* delay until the menu goes back time display and standby mode */
/* delay in systicks (50ms) */
/* 50ms*20 = 1 second */
/* 50ms*20*10 = 10 second */
/* 50ms*20*18 = 18 second */
#define MENU_IDLE_SYSTICK_TIMEOUT (20*18)
/* max alarm duration */
/* time in systicks (50ms) */
/* 50ms*20 = 1 second */
/* 50ms*20*10 = 10 second */
/* 50ms*20*18 = 18 second */
/* 50ms*20*120 = 120 seconds */
#define ALARM_MAX_SYSTICK_TIME (20*30)
/* wakeup period: The uC will wake up after the specified number of seconds */
/* the value is one less the intended number of seconds: */
/* 0: wakeup every 1 second */
/* 14: wakeup every 15 seconds */
/* 29: wakeup every 30 seconds */
/* After wakeup the uC will refresh the display and check for the alarms. This means the wakeup time should not be */
/* more than 1 minute. There might be also a delay of up to WAKEUP_PERIOD+1 seconds until the alarm is detected. */
/* Large values reduce power consumtion, but displayed time and alarm might be later than the actual RTC time. */
#define WAKEUP_PERIOD 14
/* DST (daylight savings time) rules */
/* 0: DST not applied */
/* 1: EU */
/* 2: US */
#define DST_RULE 1
/* Contrast value for the display in normal mode (u8g2_SetContrast). */
/* 208: default value for the SSD1306 */
#define DISPLAY_CONTRAST_NORMAL 210
/* Contrast value for the display in standby mode, if the display mode DISPLAY_STANDBY_MODE_REDUCED is aktive. */
/* 208: default value for the SSD1306, value 0 still shows something on the display */
#define DISPLAY_CONTRAST_REDUCED 5
/* the following variable defines the behavior of the display during standby of the uC */
#define DISPLAY_STANDYB_MODE_ALWAYS_ON 0
#define DISPLAY_STANDBY_MODE_REDUCED 1
#define DISPLAY_STANDBY_MODE_OFF 2
volatile unsigned long DisplayStandbyMode = DISPLAY_STANDBY_MODE_OFF;
/*=======================================================================*/
/* external functions */
uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
int is_dst_by_date(uint8_t region);
void adjustDST(uint8_t region);
/*=======================================================================*/
/* global variables */
#define RESET_REASON_POR 0
#define RESET_REASON_NVIC_RESET 1
#define RESET_REASON_TAMP2 2
#define RESET_REASON_TAMP3 3
#define RESET_REASON_WUF 4
volatile unsigned long SysTickCount = 0;
volatile unsigned long RTCWUCount = 0;
volatile unsigned long RTCIRQCount = 0;
volatile unsigned long isIgnoreNextKey = 0;
volatile unsigned long Tamper2Count = 0;
volatile unsigned long Tamper3Count = 0;
volatile unsigned long MenuIdleTimer = 0;
volatile unsigned long PWR_CSR_Backup;
volatile unsigned long ResetReason = RESET_REASON_POR;
volatile unsigned long AlarmSeqPos = 0;
volatile unsigned long AlarmSeqDly = 0;
const uint8_t *AlarmSeqPtr = NULL;
const uint8_t *AlarmSeqStart = NULL;
volatile unsigned long AlarmSeqTime = 0;
volatile unsigned long RTCUpdateCount = 0; // decremented in SysTick IRQ if not 0
volatile unsigned long NextDSTAdjustment = 0;
//rtc_t rtc;
u8g2_t u8g2;
/*=======================================================================*/
#define AOff(dly) (0<<5)|((dly)&0x01f)
#define ABeep(dly) (1<<5)|((dly)&0x01f)
#define ARepeat() (0xfe)
#define AEnd() (0xff)
/*=======================================================================*/
const uint8_t ASeqTrippleBeep[] =
{ ABeep(1),AOff(2), ABeep(1),AOff(2),ABeep(1),AOff(22), ARepeat() };
/*=======================================================================*/
void set_alarm_sequence(const uint8_t *alarm_sequence)
{
GPIOA->BSRR = GPIO_BSRR_BR_6; /* atomic clr PA6 */
AlarmSeqDly = 0;
AlarmSeqPtr = alarm_sequence;
AlarmSeqStart = alarm_sequence;
AlarmSeqTime = 0;
}
void ExecuteAlarmSequenceStep(void)
{
if ( AlarmSeqPtr == NULL )
return;
//AlarmSeqTime++;
//if ( AlarmSeqTime > ALARM_MAX_SYSTICK_TIME )
//{
// set_alarm_sequence(NULL);
// gui_data.is_alarm = 0; // disable alarm
// return;
//}
if ( AlarmSeqDly > 0 )
{
AlarmSeqDly--;
return ;
}
switch( (*AlarmSeqPtr)>>5 )
{
case 0:
GPIOA->BSRR = GPIO_BSRR_BR_6; /* atomic clr PA6 */
AlarmSeqDly = ((*AlarmSeqPtr) & 0x01f);
break;
case 1:
GPIOA->BSRR = GPIO_BSRR_BS_6; /* atomic set PA13 */
AlarmSeqDly = ((*AlarmSeqPtr) & 0x01f);
break;
default:
if ( *AlarmSeqPtr == 0x0fe )
AlarmSeqPtr = AlarmSeqStart;
return;
}
AlarmSeqPtr++;
}
void SetAlarmSequence(const uint8_t *alarm_sequence)
{
__disable_irq();
set_alarm_sequence(alarm_sequence);
__enable_irq();
}
/*=======================================================================*/
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
int is_t2 = 0;
int is_t3 = 0;
SysTickCount++;
/* read the tamper/button state */
/* this is more complicated, because there are no external pull ups for the buttons */
/* pull ups can be activated via GPIO, but are disabled if the pin is configured as tamper input */
/* As a consequence, we have to disable tamper (so that the internal pullups are active), then */
/* after some delay, get the GPIO value of the tamper input and restore tamper status */
if ( Tamper2Count > 0 || Tamper3Count > 0 )
{
RTC->WPR = 0x0ca; /* disable RTC write protection */
RTC->WPR = 0x053;
RTC->TAMPCR &= ~RTC_TAMPCR_TAMP2E; /* disable tamper so that we can do normal GPIO access */
RTC->TAMPCR &= ~RTC_TAMPCR_TAMP3E; /* disable tamper so that we can do normal GPIO access */
__NOP(); /* add delay after disable tamper so that GPIO can read the value */
__NOP();
is_t2 = (GPIOA->IDR & GPIO_IDR_ID0) != 0 ? 1 : 0;
is_t3 = (GPIOA->IDR & GPIO_IDR_ID2) != 0 ? 1 : 0;
RTC->TAMPCR |= RTC_TAMPCR_TAMP2E; /* enable tamper */
RTC->TAMPCR |= RTC_TAMPCR_TAMP3E; /* enable tamper */
RTC->WPR = 0; /* enable RTC write protection */
RTC->WPR = 0;
}
if ( Tamper3Count > 0 )
{
Tamper3Count--;
/* check for timeout or whether the user has released the button */
if ( Tamper3Count == 0 || is_t3 )
{
Tamper3Count = 0;
RTC->ISR &= ~RTC_ISR_TAMP3F; /* clear tamper flag, allow new tamper event */
}
}
else
{
RTC->ISR &= ~RTC_ISR_TAMP3F; /* clear tamper flag, allow new tamper event */
}
if ( Tamper2Count > 0 )
{
Tamper2Count--;
/* check for timeout or whether the user has released the button */
if ( Tamper2Count == 0 || is_t2)
{
Tamper2Count = 0;
RTC->ISR &= ~RTC_ISR_TAMP2F; /* clear tamper flag, allow new tamper event */
}
}
else
{
RTC->ISR &= ~RTC_ISR_TAMP2F; /* clear tamper flag, allow new tamper event */
}
ExecuteAlarmSequenceStep();
MenuIdleTimer++;
if ( RTCUpdateCount > 0 )
RTCUpdateCount--;
}
void __attribute__ ((interrupt, used)) RTC_IRQHandler(void)
{
//enableRCCRTCWrite();
if ( (EXTI->PR & EXTI_PR_PIF20) != 0 ) /* interrupt caused by wake up */
{
EXTI->PR = EXTI_PR_PIF20; /* wake up is connected to line 20, clear this IRQ */
RTCWUCount++;
}
/* the wake up time flag must be cleared, otherwise no further IRQ will happen */
/* in principle, this should happen only when a IRQ line 20 IRQ happens, but */
/* it will be more safe to clear this flag for any interrupt */
RTC->ISR &= ~RTC_ISR_WUTF; /* clear the wake up flag */
if ( (EXTI->PR & EXTI_PR_PIF19) != 0 ) /* interrupt caused by tamper event */
{
EXTI->PR = EXTI_PR_PIF19; /* clear tamper IRQ */
/* The TAMPxF flag has to be cleared, but this is done in the systick handler after some delay */
//RTC->ISR &= ~RTC_ISR_TAMP3F;
//RTC->ISR &= ~RTC_ISR_TAMP2F;
if ( RTC->ISR & RTC_ISR_TAMP3F )
{
if ( isIgnoreNextKey == 0 )
{
key_add(KEY_NEXT);
}
isIgnoreNextKey = 0;
MenuIdleTimer = 0;
Tamper3Count = TAMPER_SYSTICK_DELAY;
}
if ( RTC->ISR & RTC_ISR_TAMP2F )
{
if ( isIgnoreNextKey == 0 )
{
key_add(KEY_SELECT);
}
isIgnoreNextKey = 0;
MenuIdleTimer = 0;
Tamper2Count = TAMPER_SYSTICK_DELAY;
}
}
//disableRCCRTCWrite();
RTCIRQCount++;
}
/*=======================================================================*/
/*
Enable several power regions: PWR, GPIOA
Enable write access to RTC
This must be executed after each reset.
*/
void startUp(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface */
PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */
PWR_CSR_Backup = PWR->CSR; /* create a backup of the original PWR_CSR register for later analysis */
PWR->CR |= PWR_CR_CSBF; /* clear the standby flag in the PWR_CSR register, but luckily we have a copy */
PWR->CR |= PWR_CR_CWUF; /* also clear the WUF flag in PWR_CSR */
/* PA0, TAMP2, button input */
GPIOA->MODER &= ~GPIO_MODER_MODE0; /* clear mode for PA0 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD0; /* no pullup/pulldown for PA0 */
GPIOA->PUPDR |= GPIO_PUPDR_PUPD0_0; /* pullup for PA0 */
/* PA2, TAMP3, button input */
GPIOA->MODER &= ~GPIO_MODER_MODE2; /* clear mode for PA2 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD2; /* no pullup/pulldown for PA2 */
GPIOA->PUPDR |= GPIO_PUPDR_PUPD2_0; /* pullup for PA2 */
/* buzzer output */
GPIOA->MODER &= ~GPIO_MODER_MODE6; /* clear mode for PA6 */
GPIOA->MODER |= GPIO_MODER_MODE6_0; /* Output mode for PA6 */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_6; /* Push/Pull for PA6 */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED6; /* low speed for PA6 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD6; /* no pullup/pulldown for PA6 */
GPIOA->BSRR = GPIO_BSRR_BR_6; /* atomic clr PA6 */
}
/*=======================================================================*/
/*
Set internal high speed clock as clock for the system
Also call SystemCoreClockUpdate()
This must be executed after each reset.
*/
void startHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
}
/*=======================================================================*/
/*
Setup systick interrupt.
A call to SystemCoreClockUpdate() is required before calling this function.
This must be executed after each reset.
*/
void startSysTick(void)
{
SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
}
/*=======================================================================*/
/*
Setup u8g2
This must be executed after every reset
*/
void initDisplay(uint8_t is_por)
{
/* setup display */
u8g2_Setup_ssd1306_i2c_128x64_noname_f(&u8g2, U8G2_R0, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0);
gui_Init(&u8g2, is_por);
u8g2_SetFlipMode(&u8g2, 1);
}
/*=======================================================================*/
/*
configure and start RTC
This must be executed only after POR reset.
write access must be activated before calling this function: PWR->CR |= PWR_CR_DBP;
return values:
0: no clock avilable
1: external clock
2: external oszillator
*/
unsigned int initRTC(void)
{
unsigned int r = 0;
/* real time clock enable */
//enableRCCRTCWrite();
__disable_irq();
RTC->WPR = 0x0ca; /* disable RTC write protection */
RTC->WPR = 0x053;
/* try externel 32K clock source */
RCC->CSR |= RCC_CSR_LSEBYP; /* bypass oscillator */
RCC->CSR |= RCC_CSR_LSEON; /* enable low speed external clock */
delay_micro_seconds(100000*5); /* LSE requires between 100ms to 200ms */
if ( RCC->CSR & RCC_CSR_LSERDY )
{
r = 1;
}
else
{
RCC->CSR &= ~RCC_CSR_LSEON; /* disable external clock */
/* try externel 32K oscillator */
RCC->CSR &= ~RCC_CSR_LSEBYP; /* no bypass oscillator */
RCC->CSR &= ~RCC_CSR_LSEDRV_Msk; /* lowest drive */
RCC->CSR |= RCC_CSR_LSEDRV_0; /* medium low drive */
RCC->CSR |= RCC_CSR_LSEON; /* enable low speed external clock */
delay_micro_seconds(100000*6); /* LSE requires between 200ms and 400ms */
if ( RCC->CSR & RCC_CSR_LSERDY )
{
r = 2;
}
}
if ( r > 0 )
{
RCC->CSR &= ~RCC_CSR_RTCSEL_Msk; /* no clock selection for RTC */
RCC->CSR |= RCC_CSR_RTCSEL_LSE; /* select LSE */
RCC->CSR |= RCC_CSR_RTCEN; /* enable RTC */
RTC->ISR = RTC_ISR_INIT; /* request RTC stop */
while((RTC->ISR & RTC_ISR_INITF)!=RTC_ISR_INITF) /* wait for stop */
;
RTC->PRER = 0x07f00ff; /* 1 Hz clock */
RTC->TR = 0;
RTC->ISR =~ RTC_ISR_INIT; /* start RTC */
}
RTC->WPR = 0; /* enable RTC write protection */
RTC->WPR = 0;
__enable_irq();
return r;
}
/*=======================================================================*/
/*
enable RTC wakeup and interrupt
This must be executed after any reset.
*/
void startRTCWakeUp(void)
{
/* wake up time setup & start */
__disable_irq();
RTC->WPR = 0x0ca; /* disable RTC write protection */
RTC->WPR = 0x053;
RTC->CR &=~ RTC_CR_WUTE; /* disable wakeup timer for reprogramming */
while((RTC->ISR & RTC_ISR_WUTWF) != RTC_ISR_WUTWF)
;
RTC->WUTR = WAKEUP_PERIOD; /* wakeup time */
//RTC->WUTR = 0; /* reload is 1: 1Hz with the 1Hz clock */
RTC->CR &= ~RTC_CR_WUCKSEL; /* clear selection register */
RTC->CR |= RTC_CR_WUCKSEL_2; /* select the 1Hz clock */
RTC->CR |= RTC_CR_WUTE | RTC_CR_WUTIE ;
/* clear all the detection flags, not 100% sure whether this is required */
RTC->ISR &= ~RTC_ISR_WUTF;
RTC->ISR &= ~RTC_ISR_TAMP2F;
RTC->ISR &= ~RTC_ISR_TAMP3F;
/* tamper (button) detection */
/* low level, filtered, pullup enabled, IRQ enabled, Sample Freq is 128Hz */
RTC->TAMPCR =
RTC_TAMPCR_TAMP3NOERASE | RTC_TAMPCR_TAMP3IE | RTC_TAMPCR_TAMP3E |
RTC_TAMPCR_TAMP2NOERASE | RTC_TAMPCR_TAMP2IE | RTC_TAMPCR_TAMP2E |
RTC_TAMPCR_TAMPPRCH_0 | RTC_TAMPCR_TAMPFLT_1 | RTC_TAMPCR_TAMPFREQ;
// RTC_TAMPCR_TAMPPUDIS
/* wake up IRQ is connected to line 20 */
EXTI->RTSR |= EXTI_RTSR_RT20; /* rising edge for wake up line */
EXTI->IMR |= EXTI_IMR_IM20; /* interrupt enable */
/* tamper IRQ is connected to line 19 */
EXTI->RTSR |= EXTI_RTSR_RT19; /* rising edge for tamper*/
EXTI->IMR |= EXTI_IMR_IM19; /* interrupt enable */
RTC->WPR = 0; /* disable RTC write protection */
RTC->WPR = 0;
__enable_irq();
}
/* read values from RTC and store the values into the gui_data struct */
void readRTC(void)
{
uint32_t r;
int i;
uint8_t bcd[12];
r = RTC->TR;
i = 0;
do
{
bcd[i] = r & 15;
r >>= 4;
i++;
} while( i < 6 );
bcd[1] &= 7; /* seconds */
bcd[3] &= 7; /* minutes */
bcd[5] &= 3; /* hours */
gui_data.h = bcd[4] + bcd[5]*10;;
gui_data.mt = bcd[3];
gui_data.mo = bcd[2];
gui_data.st = bcd[1];
gui_data.so = bcd[0];
r = RTC->DR;
i = 0;
do
{
bcd[i] = r & 15;
r >>= 4;
i++;
} while( i < 6 );
bcd[1] &= 3; /* days */
bcd[3] &= 1; /* months */
gui_data.day = bcd[0] + bcd[1]*10;
gui_data.month = bcd[2] + bcd[3]*10;
gui_data.year_o = bcd[4];
gui_data.year_t = bcd[5];
gui_date_adjust(); /* calculate weekday */
//gui_Recalculate(); /* this will also store the values back in the backup registers */
}
void enterStandByMode(void)
{
MenuIdleTimer = 0;
if ( DisplayStandbyMode == DISPLAY_STANDBY_MODE_REDUCED )
u8g2_SetContrast(&u8g2, DISPLAY_CONTRAST_REDUCED);
if ( DisplayStandbyMode == DISPLAY_STANDBY_MODE_OFF )
u8g2_SetPowerSave(&u8g2, 1);
SetAlarmSequence(NULL);
GPIOA->MODER &= ~GPIO_MODER_MODE6; /* clear mode for PA6 --> input */
PWR->CR |= PWR_CR_PDDS; /* Power Down Deepsleep */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; /* set the cortex M0+ deep sleep flag */
__DSB(); /* finish memory access */
__WFI(); /* enter deep sleep */
__NOP();
}
/*
ch 0..15: GPIO
ch 16: ???
ch 17: vref (bandgap)
ch18: temperature sensor
returns 12 bit result, right aligned
*/
uint16_t readADC(uint8_t ch)
{
uint32_t data;
uint32_t i;
__disable_irq();
/* ADC RESET */
RCC->APB2ENR |= RCC_APB2ENR_ADCEN; /* enable ADC clock */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
RCC->APB2RSTR |= RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
RCC->APB2RSTR &= ~RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* Enable some basic parts */
ADC1->IER = 0; /* do not allow any interrupts */
ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* select HSI16 clock */
ADC1->CR |= ADC_CR_ADVREGEN; /* enable ADC voltage regulator, probably not required, because this is automatically activated */
ADC->CCR |= ADC_CCR_VREFEN; /* Wake-up the VREFINT */
ADC->CCR |= ADC_CCR_TSEN; /* Wake-up the temperature sensor */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* CALIBRATION */
if ((ADC1->CR & ADC_CR_ADEN) != 0) /* clear ADEN flag if required */
{
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN);
}
ADC1->CR |= ADC_CR_ADCAL; /* start calibration */
while ((ADC1->ISR & ADC_ISR_EOCAL) == 0) /* wait for clibration finished */
{
}
ADC1->ISR |= ADC_ISR_EOCAL; /* clear the status flag, by writing 1 to it */
__NOP(); /* not sure why, but some nop's are required here, at least 4 of them */
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
/* ENABLE ADC */
ADC1->ISR |= ADC_ISR_ADRDY; /* clear ready flag */
ADC1->CR |= ADC_CR_ADEN; /* enable ADC */
while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* wait for ADC */
{
}
//printBits(5, ADC1->ISR );
//printBits(6, ADC1->CR );
/* CONFIGURE ADC */
ADC1->CFGR1 &= ~ADC_CFGR1_EXTEN; /* software enabled conversion start */
ADC1->CFGR1 &= ~ADC_CFGR1_ALIGN; /* right alignment */
ADC1->CFGR1 &= ~ADC_CFGR1_RES; /* 12 bit resolution */
ADC1->CHSELR = 1<<ch; /* Select channel */
ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* Select a sampling mode of 111 (very slow)*/
/* DO CONVERSION */
data = 0;
for( i = 0; i < 8; i++ )
{
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
while ((ADC1->ISR & ADC_ISR_EOC) == 0) /* wait end of conversion */
{
}
data += ADC1->DR; /* get ADC result and clear the ISR_EOC flag */
}
data >>= 3;
/* DISABLE ADC */
/* at this point the end of sampling and end of sequence bits are also set in ISR registr */
if ( (ADC1->CR & ADC_CR_ADEN) != 0 )
{
ADC1->CR |= ADC_CR_ADDIS; /* disable ADC... maybe better execute a reset */
while ((ADC1->CR & ADC_CR_ADEN) != 0) /* wait for ADC disable, ADEN is also cleared */
{
}
}
/* DISABLE OTHER PARTS, INCLUDING CLOCK */
ADC->CCR &= ~ADC_CCR_VREFEN; /* disable VREFINT */
ADC->CCR &= ~ADC_CCR_TSEN; /* disable temperature sensor */
ADC1->CR &= ~ADC_CR_ADVREGEN; /* disable ADC voltage regulator */
RCC->APB2ENR &= ~RCC_APB2ENR_ADCEN; /* disable ADC clock */
__enable_irq();
return data;
}
uint16_t getTemperature(void)
{
int16_t y1, y2,x1, x2, t;
int16_t y;
y1 = 30;
x1 = *(uint16_t *)(0x1FF8007A); // 30 degree with 3.0V
x1 *=30;
x1 /=33;
y2 = 110; // AN3964: 110 degree, Datasheet: 130 degree
x2 = *(uint16_t *)(0x1FF8007E); // 130 degree with 3.0V
x2 *=30;
x2 /=33;
t = readADC(18);
y = ( (y2 - y1) * ( t - x1) ) / (x2 - x1) + y1;
return y;
}
uint8_t getBatteryLevels(uint16_t adc, uint16_t cnt)
{
uint16_t levels;
if ( adc < 1233 )
return 0;
adc -= 1233;
levels = (adc*cnt)/(4096-1223);
return levels;
}
void drawBatSymbol(uint16_t adc)
{
u8g2_uint_t w, levels;
w = u8g2_GetDisplayWidth(&u8g2);
u8g2_DrawHLine(&u8g2, w-5, 0, 2);
u8g2_DrawFrame(&u8g2, w-7, 1, 6, 9);
levels = getBatteryLevels(adc, 8);
while( levels > 0 )
{
u8g2_DrawHLine(&u8g2, w-6, 9-levels, 4);
levels--;
}
}
/*=======================================================================*/
int main()
{
int i;
uint16_t adc;
startHSIClock(); /* Increase system clock, must be executed after each reset */
SystemCoreClockUpdate(); /* Update variable SystemCoreClock, must be executed after each reset */
startUp(); /* basic system setup + make a backup of PWR_CSR (PWR_CSR_Backup), must be executed after each reset */
startSysTick(); /* start the sys tick interrupt, must be executed after each reset */
adjustDST(DST_RULE); /* adjust DST... ok,this is only done after reset, hopefully this is often enough. This must be called before readRTC() */
/* LED output line */
GPIOA->MODER &= ~GPIO_MODER_MODE13; /* clear mode for PA13 */
GPIOA->MODER |= GPIO_MODER_MODE13_0; /* Output mode for PA13 */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_13; /* Push/Pull for PA13 */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED13; /* low speed for PA13 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD13; /* no pullup/pulldown for PA13 */
GPIOA->BSRR = GPIO_BSRR_BR_13; /* atomic clr PA13 */
GPIOA->BSRR = GPIO_BSRR_BS_13; /* atomic set PA13 */
/* the lowest two bits of the PWR_CSR reg indicate wake up from standby (bit 1) and WUF als source (bit 0) */
/* both bits are 0 for POR and button reset, both bits are 1 for a wakeup reset */
/* bits | root cause */
/* 00 | POR or NVIC --> perform full setup */
/* 11 | Standby + WUF --> continue with main screen */
/* 01 | NVIC-Reset --> perform full setup */
/* we check bit 1 only */
switch(PWR_CSR_Backup & 3)
{
case 0: /* Power on reset */
ResetReason = RESET_REASON_POR;
break;
case 1: /* reset by NVIC_SystemReset() */
ResetReason = RESET_REASON_NVIC_RESET;
break;
default: /* probably a reset caused by RTC */
/* analyse RTC_ISR register */
if ( RTC->ISR & RTC_ISR_TAMP2F )
ResetReason = RESET_REASON_TAMP2;
else if ( RTC->ISR & RTC_ISR_TAMP3F )
ResetReason = RESET_REASON_TAMP3;
else
ResetReason = RESET_REASON_WUF;
break;
}
if ( ResetReason == RESET_REASON_POR || ResetReason == RESET_REASON_NVIC_RESET )
{
unsigned int r;
/* Power on reset */
r = initRTC();
readRTC();
initDisplay(1); /* init display assumes proper values in gui_data */
if ( r == 0 )
{
u8g2_ClearBuffer(&u8g2);
u8g2_SetFont(&u8g2, MENU_NORMAL_FONT);
u8g2_DrawStr(&u8g2, 0, 15, "No RTC Clock");
u8g2_SendBuffer(&u8g2);
delay_micro_seconds(3000000);
do_reset();
}
/*set a alarm time for testing */
//gui_alarm_list[0].enable = 1;
//gui_alarm_list[0].m = 1;
//gui_alarm_list[0].wd[5] = 1;
gui_Recalculate();
}
else
{
/* Reset caused by wakeup */
/* we probably have to clear the RTC detection flags for WUF and TAMPER */
/* this is done later in startRTCWakeUp() */
readRTC();
/* do a warm start of the display, this means that the display reset is skipped and the init sequence is not sent */
initDisplay(0); /* init display assumes proper values in gui_data, additionally the alarm flag might be set here */
}
if ( DisplayStandbyMode != DISPLAY_STANDYB_MODE_ALWAYS_ON )
{
/* before the RTC is enabled via startRTCWakeUp(), avoid key detection if we are in any other mode than ALWAYS_ON */
if ( ResetReason == RESET_REASON_TAMP2 || ResetReason == RESET_REASON_TAMP3 )
isIgnoreNextKey = 1;
}
startRTCWakeUp(); /* setup wakeup and temper, enable RTC IRQ, probably required after each reset */
NVIC_SetPriority(RTC_IRQn, 0);
NVIC_EnableIRQ(RTC_IRQn);
if ( ResetReason == RESET_REASON_WUF && gui_data.is_alarm == 0 )
{
/* update current time */
u8g2_ClearBuffer(&u8g2);
GPIOA->BSRR = GPIO_BSRR_BR_13; /* atomic set PA13 */
gui_Draw();
GPIOA->BSRR = GPIO_BSRR_BS_13; /* atomic clr PA13 */
u8g2_SendBuffer(&u8g2);
/* go back to sleep mode */
enterStandByMode();
}
/* turn on display now */
u8g2_SetPowerSave(&u8g2, 0); /* not required for the ALWAYS_ON mode, but does not matter in the other modes */
//u8g2_SetContrast(&u8g2, DISPLAY_CONTRAST_NORMAL);
set_contrast();
/* get current voltage level of the battery */
adc = readADC(5);
/* start user loop */
for(;;)
{
if ( RTCUpdateCount == 0 )
{
if ( gui_menu.me_list == melist_display_time )
{
readRTC();
gui_SignalTimeChange();
}
else
{
//readRTC();
//gui_Recalculate();
}
RTCUpdateCount = 10; // update every 10 systicks (half second)
}
for(;;)
{
i = key_get();
if ( i == KEY_NONE )
break;
if ( i == KEY_SELECT )
gui_Select();
if ( i == KEY_NEXT )
gui_Next();
}
u8g2_ClearBuffer(&u8g2);
GPIOA->BSRR = GPIO_BSRR_BR_13; /* atomic set PA13 */
gui_Draw();
if ( gui_menu.me_list == melist_display_time )
{
u8g2_SetFont(&u8g2, MENU_NORMAL_FONT);
if ( gui_data.display_voltage )
u8g2_DrawStr(&u8g2, 0, 8, u8x8_u16toa((adc*330UL)>>12, 3));
drawBatSymbol(adc);
}
GPIOA->BSRR = GPIO_BSRR_BS_13; /* atomic clr PA13 */
u8g2_SendBuffer(&u8g2);
if ( MenuIdleTimer > MENU_IDLE_SYSTICK_TIMEOUT )
{
if ( gui_data.is_equal == 0 ) // idea is, that the alarm does not go off during the alarm to avoid another alarm in the same minute
{
if ( gui_menu.me_list != melist_display_time )
{
/* jump back to the display menu and redraw the time. not sure if this is required */
menu_SetMEList(&gui_menu, melist_display_time, 0);
readRTC();
gui_SignalTimeChange();
u8g2_ClearBuffer(&u8g2);
gui_Draw();
u8g2_SetFont(&u8g2, MENU_NORMAL_FONT);
u8g2_DrawStr(&u8g2, 0, 8, u8x8_u16toa((adc*330UL)>>12, 3));
drawBatSymbol(adc);
u8g2_SendBuffer(&u8g2);
}
/* stop everything except RTC */
enterStandByMode();
}
else
{
/* read and recalculate so that the gui_data.is_equal is updated */
readRTC();
gui_Recalculate();
}
}
__DSB(); /* finish memory access */
__WFI(); /* enter sleep */
__NOP();
}
}