You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
7154 lines
246 KiB
7154 lines
246 KiB
/* ---------------------------------------------------------------------- |
|
* Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
|
* |
|
* $Date: 20. October 2015 |
|
* $Revision: V1.4.5 b |
|
* |
|
* Project: CMSIS DSP Library |
|
* Title: arm_math.h |
|
* |
|
* Description: Public header file for CMSIS DSP Library |
|
* |
|
* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* - Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* - Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* - Neither the name of ARM LIMITED nor the names of its contributors |
|
* may be used to endorse or promote products derived from this |
|
* software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* -------------------------------------------------------------------- */ |
|
|
|
/** |
|
\mainpage CMSIS DSP Software Library |
|
* |
|
* Introduction |
|
* ------------ |
|
* |
|
* This user manual describes the CMSIS DSP software library, |
|
* a suite of common signal processing functions for use on Cortex-M processor based devices. |
|
* |
|
* The library is divided into a number of functions each covering a specific category: |
|
* - Basic math functions |
|
* - Fast math functions |
|
* - Complex math functions |
|
* - Filters |
|
* - Matrix functions |
|
* - Transforms |
|
* - Motor control functions |
|
* - Statistical functions |
|
* - Support functions |
|
* - Interpolation functions |
|
* |
|
* The library has separate functions for operating on 8-bit integers, 16-bit integers, |
|
* 32-bit integer and 32-bit floating-point values. |
|
* |
|
* Using the Library |
|
* ------------ |
|
* |
|
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
|
* - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) |
|
* - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) |
|
* - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) |
|
* - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) |
|
* - arm_cortexM7l_math.lib (Little endian on Cortex-M7) |
|
* - arm_cortexM7b_math.lib (Big endian on Cortex-M7) |
|
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) |
|
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) |
|
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4) |
|
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4) |
|
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3) |
|
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3) |
|
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) |
|
* - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) |
|
* |
|
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
|
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
|
* public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
|
* Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
|
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
|
* |
|
* Examples |
|
* -------- |
|
* |
|
* The library ships with a number of examples which demonstrate how to use the library functions. |
|
* |
|
* Toolchain Support |
|
* ------------ |
|
* |
|
* The library has been developed and tested with MDK-ARM version 5.14.0.0 |
|
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
|
* |
|
* Building the Library |
|
* ------------ |
|
* |
|
* The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
|
* - arm_cortexM_math.uvprojx |
|
* |
|
* |
|
* The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. |
|
* |
|
* Pre-processor Macros |
|
* ------------ |
|
* |
|
* Each library project have differant pre-processor macros. |
|
* |
|
* - UNALIGNED_SUPPORT_DISABLE: |
|
* |
|
* Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
|
* |
|
* - ARM_MATH_BIG_ENDIAN: |
|
* |
|
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
|
* |
|
* - ARM_MATH_MATRIX_CHECK: |
|
* |
|
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
|
* |
|
* - ARM_MATH_ROUNDING: |
|
* |
|
* Define macro ARM_MATH_ROUNDING for rounding on support functions |
|
* |
|
* - ARM_MATH_CMx: |
|
* |
|
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
|
* and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
|
* ARM_MATH_CM7 for building the library on cortex-M7. |
|
* |
|
* - __FPU_PRESENT: |
|
* |
|
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries |
|
* |
|
* <hr> |
|
* CMSIS-DSP in ARM::CMSIS Pack |
|
* ----------------------------- |
|
* |
|
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
|
* |File/Folder |Content | |
|
* |------------------------------|------------------------------------------------------------------------| |
|
* |\b CMSIS\\Documentation\\DSP | This documentation | |
|
* |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
|
* |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
|
* |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
|
* |
|
* <hr> |
|
* Revision History of CMSIS-DSP |
|
* ------------ |
|
* Please refer to \ref ChangeLog_pg. |
|
* |
|
* Copyright Notice |
|
* ------------ |
|
* |
|
* Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
|
*/ |
|
|
|
|
|
/** |
|
* @defgroup groupMath Basic Math Functions |
|
*/ |
|
|
|
/** |
|
* @defgroup groupFastMath Fast Math Functions |
|
* This set of functions provides a fast approximation to sine, cosine, and square root. |
|
* As compared to most of the other functions in the CMSIS math library, the fast math functions |
|
* operate on individual values and not arrays. |
|
* There are separate functions for Q15, Q31, and floating-point data. |
|
* |
|
*/ |
|
|
|
/** |
|
* @defgroup groupCmplxMath Complex Math Functions |
|
* This set of functions operates on complex data vectors. |
|
* The data in the complex arrays is stored in an interleaved fashion |
|
* (real, imag, real, imag, ...). |
|
* In the API functions, the number of samples in a complex array refers |
|
* to the number of complex values; the array contains twice this number of |
|
* real values. |
|
*/ |
|
|
|
/** |
|
* @defgroup groupFilters Filtering Functions |
|
*/ |
|
|
|
/** |
|
* @defgroup groupMatrix Matrix Functions |
|
* |
|
* This set of functions provides basic matrix math operations. |
|
* The functions operate on matrix data structures. For example, |
|
* the type |
|
* definition for the floating-point matrix structure is shown |
|
* below: |
|
* <pre> |
|
* typedef struct |
|
* { |
|
* uint16_t numRows; // number of rows of the matrix. |
|
* uint16_t numCols; // number of columns of the matrix. |
|
* float32_t *pData; // points to the data of the matrix. |
|
* } arm_matrix_instance_f32; |
|
* </pre> |
|
* There are similar definitions for Q15 and Q31 data types. |
|
* |
|
* The structure specifies the size of the matrix and then points to |
|
* an array of data. The array is of size <code>numRows X numCols</code> |
|
* and the values are arranged in row order. That is, the |
|
* matrix element (i, j) is stored at: |
|
* <pre> |
|
* pData[i*numCols + j] |
|
* </pre> |
|
* |
|
* \par Init Functions |
|
* There is an associated initialization function for each type of matrix |
|
* data structure. |
|
* The initialization function sets the values of the internal structure fields. |
|
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
|
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
|
* |
|
* \par |
|
* Use of the initialization function is optional. However, if initialization function is used |
|
* then the instance structure cannot be placed into a const data section. |
|
* To place the instance structure in a const data |
|
* section, manually initialize the data structure. For example: |
|
* <pre> |
|
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
|
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
|
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
|
* </pre> |
|
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
|
* specifies the number of columns, and <code>pData</code> points to the |
|
* data array. |
|
* |
|
* \par Size Checking |
|
* By default all of the matrix functions perform size checking on the input and |
|
* output matrices. For example, the matrix addition function verifies that the |
|
* two input matrices and the output matrix all have the same number of rows and |
|
* columns. If the size check fails the functions return: |
|
* <pre> |
|
* ARM_MATH_SIZE_MISMATCH |
|
* </pre> |
|
* Otherwise the functions return |
|
* <pre> |
|
* ARM_MATH_SUCCESS |
|
* </pre> |
|
* There is some overhead associated with this matrix size checking. |
|
* The matrix size checking is enabled via the \#define |
|
* <pre> |
|
* ARM_MATH_MATRIX_CHECK |
|
* </pre> |
|
* within the library project settings. By default this macro is defined |
|
* and size checking is enabled. By changing the project settings and |
|
* undefining this macro size checking is eliminated and the functions |
|
* run a bit faster. With size checking disabled the functions always |
|
* return <code>ARM_MATH_SUCCESS</code>. |
|
*/ |
|
|
|
/** |
|
* @defgroup groupTransforms Transform Functions |
|
*/ |
|
|
|
/** |
|
* @defgroup groupController Controller Functions |
|
*/ |
|
|
|
/** |
|
* @defgroup groupStats Statistics Functions |
|
*/ |
|
/** |
|
* @defgroup groupSupport Support Functions |
|
*/ |
|
|
|
/** |
|
* @defgroup groupInterpolation Interpolation Functions |
|
* These functions perform 1- and 2-dimensional interpolation of data. |
|
* Linear interpolation is used for 1-dimensional data and |
|
* bilinear interpolation is used for 2-dimensional data. |
|
*/ |
|
|
|
/** |
|
* @defgroup groupExamples Examples |
|
*/ |
|
#ifndef _ARM_MATH_H |
|
#define _ARM_MATH_H |
|
|
|
/* ignore some GCC warnings */ |
|
#if defined ( __GNUC__ ) |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wsign-conversion" |
|
#pragma GCC diagnostic ignored "-Wconversion" |
|
#pragma GCC diagnostic ignored "-Wunused-parameter" |
|
#endif |
|
|
|
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
|
|
|
#if defined(ARM_MATH_CM7) |
|
#include "core_cm7.h" |
|
#elif defined (ARM_MATH_CM4) |
|
#include "core_cm4.h" |
|
#elif defined (ARM_MATH_CM3) |
|
#include "core_cm3.h" |
|
#elif defined (ARM_MATH_CM0) |
|
#include "core_cm0.h" |
|
#define ARM_MATH_CM0_FAMILY |
|
#elif defined (ARM_MATH_CM0PLUS) |
|
#include "core_cm0plus.h" |
|
#define ARM_MATH_CM0_FAMILY |
|
#else |
|
#error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" |
|
#endif |
|
|
|
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
|
#include "string.h" |
|
#include "math.h" |
|
#ifdef __cplusplus |
|
extern "C" |
|
{ |
|
#endif |
|
|
|
|
|
/** |
|
* @brief Macros required for reciprocal calculation in Normalized LMS |
|
*/ |
|
|
|
#define DELTA_Q31 (0x100) |
|
#define DELTA_Q15 0x5 |
|
#define INDEX_MASK 0x0000003F |
|
#ifndef PI |
|
#define PI 3.14159265358979f |
|
#endif |
|
|
|
/** |
|
* @brief Macros required for SINE and COSINE Fast math approximations |
|
*/ |
|
|
|
#define FAST_MATH_TABLE_SIZE 512 |
|
#define FAST_MATH_Q31_SHIFT (32 - 10) |
|
#define FAST_MATH_Q15_SHIFT (16 - 10) |
|
#define CONTROLLER_Q31_SHIFT (32 - 9) |
|
#define TABLE_SIZE 256 |
|
#define TABLE_SPACING_Q31 0x400000 |
|
#define TABLE_SPACING_Q15 0x80 |
|
|
|
/** |
|
* @brief Macros required for SINE and COSINE Controller functions |
|
*/ |
|
/* 1.31(q31) Fixed value of 2/360 */ |
|
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
|
#define INPUT_SPACING 0xB60B61 |
|
|
|
/** |
|
* @brief Macro for Unaligned Support |
|
*/ |
|
#ifndef UNALIGNED_SUPPORT_DISABLE |
|
#define ALIGN4 |
|
#else |
|
#if defined (__GNUC__) |
|
#define ALIGN4 __attribute__((aligned(4))) |
|
#else |
|
#define ALIGN4 __align(4) |
|
#endif |
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|
|
|
/** |
|
* @brief Error status returned by some functions in the library. |
|
*/ |
|
|
|
typedef enum |
|
{ |
|
ARM_MATH_SUCCESS = 0, /**< No error */ |
|
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
|
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
|
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
|
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
|
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
|
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
|
} arm_status; |
|
|
|
/** |
|
* @brief 8-bit fractional data type in 1.7 format. |
|
*/ |
|
typedef int8_t q7_t; |
|
|
|
/** |
|
* @brief 16-bit fractional data type in 1.15 format. |
|
*/ |
|
typedef int16_t q15_t; |
|
|
|
/** |
|
* @brief 32-bit fractional data type in 1.31 format. |
|
*/ |
|
typedef int32_t q31_t; |
|
|
|
/** |
|
* @brief 64-bit fractional data type in 1.63 format. |
|
*/ |
|
typedef int64_t q63_t; |
|
|
|
/** |
|
* @brief 32-bit floating-point type definition. |
|
*/ |
|
typedef float float32_t; |
|
|
|
/** |
|
* @brief 64-bit floating-point type definition. |
|
*/ |
|
typedef double float64_t; |
|
|
|
/** |
|
* @brief definition to read/write two 16 bit values. |
|
*/ |
|
#if defined __CC_ARM |
|
#define __SIMD32_TYPE int32_t __packed |
|
#define CMSIS_UNUSED __attribute__((unused)) |
|
|
|
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
|
#define __SIMD32_TYPE int32_t |
|
#define CMSIS_UNUSED __attribute__((unused)) |
|
|
|
#elif defined __GNUC__ |
|
#define __SIMD32_TYPE int32_t |
|
#define CMSIS_UNUSED __attribute__((unused)) |
|
|
|
#elif defined __ICCARM__ |
|
#define __SIMD32_TYPE int32_t __packed |
|
#define CMSIS_UNUSED |
|
|
|
#elif defined __CSMC__ |
|
#define __SIMD32_TYPE int32_t |
|
#define CMSIS_UNUSED |
|
|
|
#elif defined __TASKING__ |
|
#define __SIMD32_TYPE __unaligned int32_t |
|
#define CMSIS_UNUSED |
|
|
|
#else |
|
#error Unknown compiler |
|
#endif |
|
|
|
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
|
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
|
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
|
#define __SIMD64(addr) (*(int64_t **) & (addr)) |
|
|
|
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
|
/** |
|
* @brief definition to pack two 16 bit values. |
|
*/ |
|
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
|
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
|
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
|
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
|
|
|
#endif |
|
|
|
|
|
/** |
|
* @brief definition to pack four 8 bit values. |
|
*/ |
|
#ifndef ARM_MATH_BIG_ENDIAN |
|
|
|
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
|
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
|
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
|
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
|
#else |
|
|
|
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
|
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
|
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
|
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
|
|
|
#endif |
|
|
|
|
|
/** |
|
* @brief Clips Q63 to Q31 values. |
|
*/ |
|
static __INLINE q31_t clip_q63_to_q31( |
|
q63_t x) |
|
{ |
|
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
|
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
|
} |
|
|
|
/** |
|
* @brief Clips Q63 to Q15 values. |
|
*/ |
|
static __INLINE q15_t clip_q63_to_q15( |
|
q63_t x) |
|
{ |
|
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
|
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
|
} |
|
|
|
/** |
|
* @brief Clips Q31 to Q7 values. |
|
*/ |
|
static __INLINE q7_t clip_q31_to_q7( |
|
q31_t x) |
|
{ |
|
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
|
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
|
} |
|
|
|
/** |
|
* @brief Clips Q31 to Q15 values. |
|
*/ |
|
static __INLINE q15_t clip_q31_to_q15( |
|
q31_t x) |
|
{ |
|
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
|
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
|
} |
|
|
|
/** |
|
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
|
*/ |
|
|
|
static __INLINE q63_t mult32x64( |
|
q63_t x, |
|
q31_t y) |
|
{ |
|
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
|
(((q63_t) (x >> 32) * y))); |
|
} |
|
|
|
/* |
|
#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) |
|
#define __CLZ __clz |
|
#endif |
|
*/ |
|
/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ |
|
#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) |
|
static __INLINE uint32_t __CLZ( |
|
q31_t data); |
|
|
|
static __INLINE uint32_t __CLZ( |
|
q31_t data) |
|
{ |
|
uint32_t count = 0; |
|
uint32_t mask = 0x80000000; |
|
|
|
while((data & mask) == 0) |
|
{ |
|
count += 1u; |
|
mask = mask >> 1u; |
|
} |
|
|
|
return (count); |
|
} |
|
#endif |
|
|
|
/** |
|
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
|
*/ |
|
|
|
static __INLINE uint32_t arm_recip_q31( |
|
q31_t in, |
|
q31_t * dst, |
|
q31_t * pRecipTable) |
|
{ |
|
q31_t out; |
|
uint32_t tempVal; |
|
uint32_t index, i; |
|
uint32_t signBits; |
|
|
|
if(in > 0) |
|
{ |
|
signBits = ((uint32_t) (__CLZ( in) - 1)); |
|
} |
|
else |
|
{ |
|
signBits = ((uint32_t) (__CLZ(-in) - 1)); |
|
} |
|
|
|
/* Convert input sample to 1.31 format */ |
|
in = (in << signBits); |
|
|
|
/* calculation of index for initial approximated Val */ |
|
index = (uint32_t)(in >> 24); |
|
index = (index & INDEX_MASK); |
|
|
|
/* 1.31 with exp 1 */ |
|
out = pRecipTable[index]; |
|
|
|
/* calculation of reciprocal value */ |
|
/* running approximation for two iterations */ |
|
for (i = 0u; i < 2u; i++) |
|
{ |
|
tempVal = (uint32_t) (((q63_t) in * out) >> 31); |
|
tempVal = 0x7FFFFFFFu - tempVal; |
|
/* 1.31 with exp 1 */ |
|
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ |
|
out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); |
|
} |
|
|
|
/* write output */ |
|
*dst = out; |
|
|
|
/* return num of signbits of out = 1/in value */ |
|
return (signBits + 1u); |
|
} |
|
|
|
|
|
/** |
|
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
|
*/ |
|
static __INLINE uint32_t arm_recip_q15( |
|
q15_t in, |
|
q15_t * dst, |
|
q15_t * pRecipTable) |
|
{ |
|
q15_t out = 0; |
|
uint32_t tempVal = 0; |
|
uint32_t index = 0, i = 0; |
|
uint32_t signBits = 0; |
|
|
|
if(in > 0) |
|
{ |
|
signBits = ((uint32_t)(__CLZ( in) - 17)); |
|
} |
|
else |
|
{ |
|
signBits = ((uint32_t)(__CLZ(-in) - 17)); |
|
} |
|
|
|
/* Convert input sample to 1.15 format */ |
|
in = (in << signBits); |
|
|
|
/* calculation of index for initial approximated Val */ |
|
index = (uint32_t)(in >> 8); |
|
index = (index & INDEX_MASK); |
|
|
|
/* 1.15 with exp 1 */ |
|
out = pRecipTable[index]; |
|
|
|
/* calculation of reciprocal value */ |
|
/* running approximation for two iterations */ |
|
for (i = 0u; i < 2u; i++) |
|
{ |
|
tempVal = (uint32_t) (((q31_t) in * out) >> 15); |
|
tempVal = 0x7FFFu - tempVal; |
|
/* 1.15 with exp 1 */ |
|
out = (q15_t) (((q31_t) out * tempVal) >> 14); |
|
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ |
|
} |
|
|
|
/* write output */ |
|
*dst = out; |
|
|
|
/* return num of signbits of out = 1/in value */ |
|
return (signBits + 1); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined intrinisic function for only M0 processors |
|
*/ |
|
#if defined(ARM_MATH_CM0_FAMILY) |
|
static __INLINE q31_t __SSAT( |
|
q31_t x, |
|
uint32_t y) |
|
{ |
|
int32_t posMax, negMin; |
|
uint32_t i; |
|
|
|
posMax = 1; |
|
for (i = 0; i < (y - 1); i++) |
|
{ |
|
posMax = posMax * 2; |
|
} |
|
|
|
if(x > 0) |
|
{ |
|
posMax = (posMax - 1); |
|
|
|
if(x > posMax) |
|
{ |
|
x = posMax; |
|
} |
|
} |
|
else |
|
{ |
|
negMin = -posMax; |
|
|
|
if(x < negMin) |
|
{ |
|
x = negMin; |
|
} |
|
} |
|
return (x); |
|
} |
|
#endif /* end of ARM_MATH_CM0_FAMILY */ |
|
|
|
|
|
/* |
|
* @brief C custom defined intrinsic function for M3 and M0 processors |
|
*/ |
|
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
|
|
|
/* |
|
* @brief C custom defined QADD8 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QADD8( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s, t, u; |
|
|
|
r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
|
s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
|
t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
|
u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
|
|
|
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QSUB8 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QSUB8( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s, t, u; |
|
|
|
r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
|
s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
|
t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
|
u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
|
|
|
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QADD16 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QADD16( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ |
|
q31_t r = 0, s = 0; |
|
|
|
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SHADD16 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SHADD16( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QSUB16 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QSUB16( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SHSUB16 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SHSUB16( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QASX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QASX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SHASX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SHASX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QSAX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __QSAX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SHSAX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SHSAX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
q31_t r, s; |
|
|
|
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
|
|
|
return ((uint32_t)((s << 16) | (r ))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMUSDX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMUSDX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
|
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
|
} |
|
|
|
/* |
|
* @brief C custom defined SMUADX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMUADX( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QADD for M3 and M0 processors |
|
*/ |
|
static __INLINE int32_t __QADD( |
|
int32_t x, |
|
int32_t y) |
|
{ |
|
return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined QSUB for M3 and M0 processors |
|
*/ |
|
static __INLINE int32_t __QSUB( |
|
int32_t x, |
|
int32_t y) |
|
{ |
|
return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMLAD for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMLAD( |
|
uint32_t x, |
|
uint32_t y, |
|
uint32_t sum) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
|
( ((q31_t)sum ) ) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMLADX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMLADX( |
|
uint32_t x, |
|
uint32_t y, |
|
uint32_t sum) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
( ((q31_t)sum ) ) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMLSDX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMLSDX( |
|
uint32_t x, |
|
uint32_t y, |
|
uint32_t sum) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
|
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
( ((q31_t)sum ) ) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMLALD for M3 and M0 processors |
|
*/ |
|
static __INLINE uint64_t __SMLALD( |
|
uint32_t x, |
|
uint32_t y, |
|
uint64_t sum) |
|
{ |
|
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ |
|
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
|
( ((q63_t)sum ) ) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMLALDX for M3 and M0 processors |
|
*/ |
|
static __INLINE uint64_t __SMLALDX( |
|
uint32_t x, |
|
uint32_t y, |
|
uint64_t sum) |
|
{ |
|
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ |
|
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
( ((q63_t)sum ) ) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMUAD for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMUAD( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
|
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SMUSD for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SMUSD( |
|
uint32_t x, |
|
uint32_t y) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - |
|
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
|
} |
|
|
|
|
|
/* |
|
* @brief C custom defined SXTB16 for M3 and M0 processors |
|
*/ |
|
static __INLINE uint32_t __SXTB16( |
|
uint32_t x) |
|
{ |
|
return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | |
|
((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); |
|
} |
|
|
|
#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q7 FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
|
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
} arm_fir_instance_q7; |
|
|
|
/** |
|
* @brief Instance structure for the Q15 FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
} arm_fir_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
} arm_fir_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
} arm_fir_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q7 FIR filter. |
|
* @param[in] S points to an instance of the Q7 FIR filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_q7( |
|
const arm_fir_instance_q7 * S, |
|
q7_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q7 FIR filter. |
|
* @param[in,out] S points to an instance of the Q7 FIR structure. |
|
* @param[in] numTaps Number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of samples that are processed. |
|
*/ |
|
void arm_fir_init_q7( |
|
arm_fir_instance_q7 * S, |
|
uint16_t numTaps, |
|
q7_t * pCoeffs, |
|
q7_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 FIR filter. |
|
* @param[in] S points to an instance of the Q15 FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_q15( |
|
const arm_fir_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q15 FIR filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_fast_q15( |
|
const arm_fir_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 FIR filter. |
|
* @param[in,out] S points to an instance of the Q15 FIR filter structure. |
|
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of samples that are processed at a time. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
|
* <code>numTaps</code> is not a supported value. |
|
*/ |
|
arm_status arm_fir_init_q15( |
|
arm_fir_instance_q15 * S, |
|
uint16_t numTaps, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 FIR filter. |
|
* @param[in] S points to an instance of the Q31 FIR filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_q31( |
|
const arm_fir_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q31 FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_fast_q31( |
|
const arm_fir_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 FIR filter. |
|
* @param[in,out] S points to an instance of the Q31 FIR structure. |
|
* @param[in] numTaps Number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of samples that are processed at a time. |
|
*/ |
|
void arm_fir_init_q31( |
|
arm_fir_instance_q31 * S, |
|
uint16_t numTaps, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point FIR filter. |
|
* @param[in] S points to an instance of the floating-point FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_f32( |
|
const arm_fir_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point FIR filter. |
|
* @param[in,out] S points to an instance of the floating-point FIR filter structure. |
|
* @param[in] numTaps Number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of samples that are processed at a time. |
|
*/ |
|
void arm_fir_init_f32( |
|
arm_fir_instance_f32 * S, |
|
uint16_t numTaps, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
|
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
|
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
|
} arm_biquad_casd_df1_inst_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
|
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
|
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
|
} arm_biquad_casd_df1_inst_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
|
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
|
} arm_biquad_casd_df1_inst_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 Biquad cascade filter. |
|
* @param[in] S points to an instance of the Q15 Biquad cascade structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df1_q15( |
|
const arm_biquad_casd_df1_inst_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the Q15 Biquad cascade structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
|
*/ |
|
void arm_biquad_cascade_df1_init_q15( |
|
arm_biquad_casd_df1_inst_q15 * S, |
|
uint8_t numStages, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
int8_t postShift); |
|
|
|
|
|
/** |
|
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q15 Biquad cascade structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df1_fast_q15( |
|
const arm_biquad_casd_df1_inst_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 Biquad cascade filter |
|
* @param[in] S points to an instance of the Q31 Biquad cascade structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df1_q31( |
|
const arm_biquad_casd_df1_inst_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q31 Biquad cascade structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df1_fast_q31( |
|
const arm_biquad_casd_df1_inst_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the Q31 Biquad cascade structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
|
*/ |
|
void arm_biquad_cascade_df1_init_q31( |
|
arm_biquad_casd_df1_inst_q31 * S, |
|
uint8_t numStages, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
int8_t postShift); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point Biquad cascade filter. |
|
* @param[in] S points to an instance of the floating-point Biquad cascade structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df1_f32( |
|
const arm_biquad_casd_df1_inst_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the floating-point Biquad cascade structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
*/ |
|
void arm_biquad_cascade_df1_init_f32( |
|
arm_biquad_casd_df1_inst_f32 * S, |
|
uint8_t numStages, |
|
float32_t * pCoeffs, |
|
float32_t * pState); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point matrix structure. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows of the matrix. */ |
|
uint16_t numCols; /**< number of columns of the matrix. */ |
|
float32_t *pData; /**< points to the data of the matrix. */ |
|
} arm_matrix_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point matrix structure. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows of the matrix. */ |
|
uint16_t numCols; /**< number of columns of the matrix. */ |
|
float64_t *pData; /**< points to the data of the matrix. */ |
|
} arm_matrix_instance_f64; |
|
|
|
/** |
|
* @brief Instance structure for the Q15 matrix structure. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows of the matrix. */ |
|
uint16_t numCols; /**< number of columns of the matrix. */ |
|
q15_t *pData; /**< points to the data of the matrix. */ |
|
} arm_matrix_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 matrix structure. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows of the matrix. */ |
|
uint16_t numCols; /**< number of columns of the matrix. */ |
|
q31_t *pData; /**< points to the data of the matrix. */ |
|
} arm_matrix_instance_q31; |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix addition. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_add_f32( |
|
const arm_matrix_instance_f32 * pSrcA, |
|
const arm_matrix_instance_f32 * pSrcB, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix addition. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_add_q15( |
|
const arm_matrix_instance_q15 * pSrcA, |
|
const arm_matrix_instance_q15 * pSrcB, |
|
arm_matrix_instance_q15 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix addition. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_add_q31( |
|
const arm_matrix_instance_q31 * pSrcA, |
|
const arm_matrix_instance_q31 * pSrcB, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Floating-point, complex, matrix multiplication. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_cmplx_mult_f32( |
|
const arm_matrix_instance_f32 * pSrcA, |
|
const arm_matrix_instance_f32 * pSrcB, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15, complex, matrix multiplication. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_cmplx_mult_q15( |
|
const arm_matrix_instance_q15 * pSrcA, |
|
const arm_matrix_instance_q15 * pSrcB, |
|
arm_matrix_instance_q15 * pDst, |
|
q15_t * pScratch); |
|
|
|
|
|
/** |
|
* @brief Q31, complex, matrix multiplication. |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_cmplx_mult_q31( |
|
const arm_matrix_instance_q31 * pSrcA, |
|
const arm_matrix_instance_q31 * pSrcB, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix transpose. |
|
* @param[in] pSrc points to the input matrix |
|
* @param[out] pDst points to the output matrix |
|
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
|
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_trans_f32( |
|
const arm_matrix_instance_f32 * pSrc, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix transpose. |
|
* @param[in] pSrc points to the input matrix |
|
* @param[out] pDst points to the output matrix |
|
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
|
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_trans_q15( |
|
const arm_matrix_instance_q15 * pSrc, |
|
arm_matrix_instance_q15 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix transpose. |
|
* @param[in] pSrc points to the input matrix |
|
* @param[out] pDst points to the output matrix |
|
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
|
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_trans_q31( |
|
const arm_matrix_instance_q31 * pSrc, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix multiplication |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_mult_f32( |
|
const arm_matrix_instance_f32 * pSrcA, |
|
const arm_matrix_instance_f32 * pSrcB, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix multiplication |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @param[in] pState points to the array for storing intermediate results |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_mult_q15( |
|
const arm_matrix_instance_q15 * pSrcA, |
|
const arm_matrix_instance_q15 * pSrcB, |
|
arm_matrix_instance_q15 * pDst, |
|
q15_t * pState); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @param[in] pState points to the array for storing intermediate results |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_mult_fast_q15( |
|
const arm_matrix_instance_q15 * pSrcA, |
|
const arm_matrix_instance_q15 * pSrcB, |
|
arm_matrix_instance_q15 * pDst, |
|
q15_t * pState); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix multiplication |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_mult_q31( |
|
const arm_matrix_instance_q31 * pSrcA, |
|
const arm_matrix_instance_q31 * pSrcB, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_mult_fast_q31( |
|
const arm_matrix_instance_q31 * pSrcA, |
|
const arm_matrix_instance_q31 * pSrcB, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix subtraction |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_sub_f32( |
|
const arm_matrix_instance_f32 * pSrcA, |
|
const arm_matrix_instance_f32 * pSrcB, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix subtraction |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_sub_q15( |
|
const arm_matrix_instance_q15 * pSrcA, |
|
const arm_matrix_instance_q15 * pSrcB, |
|
arm_matrix_instance_q15 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix subtraction |
|
* @param[in] pSrcA points to the first input matrix structure |
|
* @param[in] pSrcB points to the second input matrix structure |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_sub_q31( |
|
const arm_matrix_instance_q31 * pSrcA, |
|
const arm_matrix_instance_q31 * pSrcB, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix scaling. |
|
* @param[in] pSrc points to the input matrix |
|
* @param[in] scale scale factor |
|
* @param[out] pDst points to the output matrix |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_scale_f32( |
|
const arm_matrix_instance_f32 * pSrc, |
|
float32_t scale, |
|
arm_matrix_instance_f32 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix scaling. |
|
* @param[in] pSrc points to input matrix |
|
* @param[in] scaleFract fractional portion of the scale factor |
|
* @param[in] shift number of bits to shift the result by |
|
* @param[out] pDst points to output matrix |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_scale_q15( |
|
const arm_matrix_instance_q15 * pSrc, |
|
q15_t scaleFract, |
|
int32_t shift, |
|
arm_matrix_instance_q15 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix scaling. |
|
* @param[in] pSrc points to input matrix |
|
* @param[in] scaleFract fractional portion of the scale factor |
|
* @param[in] shift number of bits to shift the result by |
|
* @param[out] pDst points to output matrix structure |
|
* @return The function returns either |
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
|
*/ |
|
arm_status arm_mat_scale_q31( |
|
const arm_matrix_instance_q31 * pSrc, |
|
q31_t scaleFract, |
|
int32_t shift, |
|
arm_matrix_instance_q31 * pDst); |
|
|
|
|
|
/** |
|
* @brief Q31 matrix initialization. |
|
* @param[in,out] S points to an instance of the floating-point matrix structure. |
|
* @param[in] nRows number of rows in the matrix. |
|
* @param[in] nColumns number of columns in the matrix. |
|
* @param[in] pData points to the matrix data array. |
|
*/ |
|
void arm_mat_init_q31( |
|
arm_matrix_instance_q31 * S, |
|
uint16_t nRows, |
|
uint16_t nColumns, |
|
q31_t * pData); |
|
|
|
|
|
/** |
|
* @brief Q15 matrix initialization. |
|
* @param[in,out] S points to an instance of the floating-point matrix structure. |
|
* @param[in] nRows number of rows in the matrix. |
|
* @param[in] nColumns number of columns in the matrix. |
|
* @param[in] pData points to the matrix data array. |
|
*/ |
|
void arm_mat_init_q15( |
|
arm_matrix_instance_q15 * S, |
|
uint16_t nRows, |
|
uint16_t nColumns, |
|
q15_t * pData); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix initialization. |
|
* @param[in,out] S points to an instance of the floating-point matrix structure. |
|
* @param[in] nRows number of rows in the matrix. |
|
* @param[in] nColumns number of columns in the matrix. |
|
* @param[in] pData points to the matrix data array. |
|
*/ |
|
void arm_mat_init_f32( |
|
arm_matrix_instance_f32 * S, |
|
uint16_t nRows, |
|
uint16_t nColumns, |
|
float32_t * pData); |
|
|
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 PID Control. |
|
*/ |
|
typedef struct |
|
{ |
|
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
|
#ifdef ARM_MATH_CM0_FAMILY |
|
q15_t A1; |
|
q15_t A2; |
|
#else |
|
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
|
#endif |
|
q15_t state[3]; /**< The state array of length 3. */ |
|
q15_t Kp; /**< The proportional gain. */ |
|
q15_t Ki; /**< The integral gain. */ |
|
q15_t Kd; /**< The derivative gain. */ |
|
} arm_pid_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 PID Control. |
|
*/ |
|
typedef struct |
|
{ |
|
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
|
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
|
q31_t A2; /**< The derived gain, A2 = Kd . */ |
|
q31_t state[3]; /**< The state array of length 3. */ |
|
q31_t Kp; /**< The proportional gain. */ |
|
q31_t Ki; /**< The integral gain. */ |
|
q31_t Kd; /**< The derivative gain. */ |
|
} arm_pid_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point PID Control. |
|
*/ |
|
typedef struct |
|
{ |
|
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
|
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
|
float32_t A2; /**< The derived gain, A2 = Kd . */ |
|
float32_t state[3]; /**< The state array of length 3. */ |
|
float32_t Kp; /**< The proportional gain. */ |
|
float32_t Ki; /**< The integral gain. */ |
|
float32_t Kd; /**< The derivative gain. */ |
|
} arm_pid_instance_f32; |
|
|
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point PID Control. |
|
* @param[in,out] S points to an instance of the PID structure. |
|
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
|
*/ |
|
void arm_pid_init_f32( |
|
arm_pid_instance_f32 * S, |
|
int32_t resetStateFlag); |
|
|
|
|
|
/** |
|
* @brief Reset function for the floating-point PID Control. |
|
* @param[in,out] S is an instance of the floating-point PID Control structure |
|
*/ |
|
void arm_pid_reset_f32( |
|
arm_pid_instance_f32 * S); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 PID Control. |
|
* @param[in,out] S points to an instance of the Q15 PID structure. |
|
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
|
*/ |
|
void arm_pid_init_q31( |
|
arm_pid_instance_q31 * S, |
|
int32_t resetStateFlag); |
|
|
|
|
|
/** |
|
* @brief Reset function for the Q31 PID Control. |
|
* @param[in,out] S points to an instance of the Q31 PID Control structure |
|
*/ |
|
|
|
void arm_pid_reset_q31( |
|
arm_pid_instance_q31 * S); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 PID Control. |
|
* @param[in,out] S points to an instance of the Q15 PID structure. |
|
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
|
*/ |
|
void arm_pid_init_q15( |
|
arm_pid_instance_q15 * S, |
|
int32_t resetStateFlag); |
|
|
|
|
|
/** |
|
* @brief Reset function for the Q15 PID Control. |
|
* @param[in,out] S points to an instance of the q15 PID Control structure |
|
*/ |
|
void arm_pid_reset_q15( |
|
arm_pid_instance_q15 * S); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point Linear Interpolate function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t nValues; /**< nValues */ |
|
float32_t x1; /**< x1 */ |
|
float32_t xSpacing; /**< xSpacing */ |
|
float32_t *pYData; /**< pointer to the table of Y values */ |
|
} arm_linear_interp_instance_f32; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point bilinear interpolation function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows in the data table. */ |
|
uint16_t numCols; /**< number of columns in the data table. */ |
|
float32_t *pData; /**< points to the data table. */ |
|
} arm_bilinear_interp_instance_f32; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 bilinear interpolation function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows in the data table. */ |
|
uint16_t numCols; /**< number of columns in the data table. */ |
|
q31_t *pData; /**< points to the data table. */ |
|
} arm_bilinear_interp_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the Q15 bilinear interpolation function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows in the data table. */ |
|
uint16_t numCols; /**< number of columns in the data table. */ |
|
q15_t *pData; /**< points to the data table. */ |
|
} arm_bilinear_interp_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q15 bilinear interpolation function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numRows; /**< number of rows in the data table. */ |
|
uint16_t numCols; /**< number of columns in the data table. */ |
|
q7_t *pData; /**< points to the data table. */ |
|
} arm_bilinear_interp_instance_q7; |
|
|
|
|
|
/** |
|
* @brief Q7 vector multiplication. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_mult_q7( |
|
q7_t * pSrcA, |
|
q7_t * pSrcB, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q15 vector multiplication. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_mult_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q31 vector multiplication. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_mult_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Floating-point vector multiplication. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_mult_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
} arm_cfft_radix2_instance_q15; |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix2_init_q15( |
|
arm_cfft_radix2_instance_q15 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix2_q15( |
|
const arm_cfft_radix2_instance_q15 * S, |
|
q15_t * pSrc); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
} arm_cfft_radix4_instance_q15; |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix4_init_q15( |
|
arm_cfft_radix4_instance_q15 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix4_q15( |
|
const arm_cfft_radix4_instance_q15 * S, |
|
q15_t * pSrc); |
|
|
|
/** |
|
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
} arm_cfft_radix2_instance_q31; |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix2_init_q31( |
|
arm_cfft_radix2_instance_q31 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix2_q31( |
|
const arm_cfft_radix2_instance_q31 * S, |
|
q31_t * pSrc); |
|
|
|
/** |
|
* @brief Instance structure for the Q31 CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
} arm_cfft_radix4_instance_q31; |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix4_q31( |
|
const arm_cfft_radix4_instance_q31 * S, |
|
q31_t * pSrc); |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix4_init_q31( |
|
arm_cfft_radix4_instance_q31 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
float32_t onebyfftLen; /**< value of 1/fftLen. */ |
|
} arm_cfft_radix2_instance_f32; |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix2_init_f32( |
|
arm_cfft_radix2_instance_f32 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix2_f32( |
|
const arm_cfft_radix2_instance_f32 * S, |
|
float32_t * pSrc); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
|
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
|
float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
|
float32_t onebyfftLen; /**< value of 1/fftLen. */ |
|
} arm_cfft_radix4_instance_f32; |
|
|
|
/* Deprecated */ |
|
arm_status arm_cfft_radix4_init_f32( |
|
arm_cfft_radix4_instance_f32 * S, |
|
uint16_t fftLen, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/* Deprecated */ |
|
void arm_cfft_radix4_f32( |
|
const arm_cfft_radix4_instance_f32 * S, |
|
float32_t * pSrc); |
|
|
|
/** |
|
* @brief Instance structure for the fixed-point CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t bitRevLength; /**< bit reversal table length. */ |
|
} arm_cfft_instance_q15; |
|
|
|
void arm_cfft_q15( |
|
const arm_cfft_instance_q15 * S, |
|
q15_t * p1, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/** |
|
* @brief Instance structure for the fixed-point CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t bitRevLength; /**< bit reversal table length. */ |
|
} arm_cfft_instance_q31; |
|
|
|
void arm_cfft_q31( |
|
const arm_cfft_instance_q31 * S, |
|
q31_t * p1, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point CFFT/CIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t fftLen; /**< length of the FFT. */ |
|
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
|
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
|
uint16_t bitRevLength; /**< bit reversal table length. */ |
|
} arm_cfft_instance_f32; |
|
|
|
void arm_cfft_f32( |
|
const arm_cfft_instance_f32 * S, |
|
float32_t * p1, |
|
uint8_t ifftFlag, |
|
uint8_t bitReverseFlag); |
|
|
|
/** |
|
* @brief Instance structure for the Q15 RFFT/RIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t fftLenReal; /**< length of the real FFT. */ |
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
|
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
|
const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_rfft_instance_q15; |
|
|
|
arm_status arm_rfft_init_q15( |
|
arm_rfft_instance_q15 * S, |
|
uint32_t fftLenReal, |
|
uint32_t ifftFlagR, |
|
uint32_t bitReverseFlag); |
|
|
|
void arm_rfft_q15( |
|
const arm_rfft_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst); |
|
|
|
/** |
|
* @brief Instance structure for the Q31 RFFT/RIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t fftLenReal; /**< length of the real FFT. */ |
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
|
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
|
const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_rfft_instance_q31; |
|
|
|
arm_status arm_rfft_init_q31( |
|
arm_rfft_instance_q31 * S, |
|
uint32_t fftLenReal, |
|
uint32_t ifftFlagR, |
|
uint32_t bitReverseFlag); |
|
|
|
void arm_rfft_q31( |
|
const arm_rfft_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point RFFT/RIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint32_t fftLenReal; /**< length of the real FFT. */ |
|
uint16_t fftLenBy2; /**< length of the complex FFT. */ |
|
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
|
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
|
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
|
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
|
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
|
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_rfft_instance_f32; |
|
|
|
arm_status arm_rfft_init_f32( |
|
arm_rfft_instance_f32 * S, |
|
arm_cfft_radix4_instance_f32 * S_CFFT, |
|
uint32_t fftLenReal, |
|
uint32_t ifftFlagR, |
|
uint32_t bitReverseFlag); |
|
|
|
void arm_rfft_f32( |
|
const arm_rfft_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point RFFT/RIFFT function. |
|
*/ |
|
typedef struct |
|
{ |
|
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
|
uint16_t fftLenRFFT; /**< length of the real sequence */ |
|
float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
|
} arm_rfft_fast_instance_f32 ; |
|
|
|
arm_status arm_rfft_fast_init_f32 ( |
|
arm_rfft_fast_instance_f32 * S, |
|
uint16_t fftLen); |
|
|
|
void arm_rfft_fast_f32( |
|
arm_rfft_fast_instance_f32 * S, |
|
float32_t * p, float32_t * pOut, |
|
uint8_t ifftFlag); |
|
|
|
/** |
|
* @brief Instance structure for the floating-point DCT4/IDCT4 function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t N; /**< length of the DCT4. */ |
|
uint16_t Nby2; /**< half of the length of the DCT4. */ |
|
float32_t normalize; /**< normalizing factor. */ |
|
float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
|
float32_t *pCosFactor; /**< points to the cosFactor table. */ |
|
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
|
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_dct4_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point DCT4/IDCT4. |
|
* @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. |
|
* @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
|
* @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
|
* @param[in] N length of the DCT4. |
|
* @param[in] Nby2 half of the length of the DCT4. |
|
* @param[in] normalize normalizing factor. |
|
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
|
*/ |
|
arm_status arm_dct4_init_f32( |
|
arm_dct4_instance_f32 * S, |
|
arm_rfft_instance_f32 * S_RFFT, |
|
arm_cfft_radix4_instance_f32 * S_CFFT, |
|
uint16_t N, |
|
uint16_t Nby2, |
|
float32_t normalize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point DCT4/IDCT4. |
|
* @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. |
|
* @param[in] pState points to state buffer. |
|
* @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
|
*/ |
|
void arm_dct4_f32( |
|
const arm_dct4_instance_f32 * S, |
|
float32_t * pState, |
|
float32_t * pInlineBuffer); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q31 DCT4/IDCT4 function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t N; /**< length of the DCT4. */ |
|
uint16_t Nby2; /**< half of the length of the DCT4. */ |
|
q31_t normalize; /**< normalizing factor. */ |
|
q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
|
q31_t *pCosFactor; /**< points to the cosFactor table. */ |
|
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
|
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_dct4_instance_q31; |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 DCT4/IDCT4. |
|
* @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. |
|
* @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
|
* @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
|
* @param[in] N length of the DCT4. |
|
* @param[in] Nby2 half of the length of the DCT4. |
|
* @param[in] normalize normalizing factor. |
|
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
|
*/ |
|
arm_status arm_dct4_init_q31( |
|
arm_dct4_instance_q31 * S, |
|
arm_rfft_instance_q31 * S_RFFT, |
|
arm_cfft_radix4_instance_q31 * S_CFFT, |
|
uint16_t N, |
|
uint16_t Nby2, |
|
q31_t normalize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 DCT4/IDCT4. |
|
* @param[in] S points to an instance of the Q31 DCT4 structure. |
|
* @param[in] pState points to state buffer. |
|
* @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
|
*/ |
|
void arm_dct4_q31( |
|
const arm_dct4_instance_q31 * S, |
|
q31_t * pState, |
|
q31_t * pInlineBuffer); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 DCT4/IDCT4 function. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t N; /**< length of the DCT4. */ |
|
uint16_t Nby2; /**< half of the length of the DCT4. */ |
|
q15_t normalize; /**< normalizing factor. */ |
|
q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
|
q15_t *pCosFactor; /**< points to the cosFactor table. */ |
|
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
|
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
|
} arm_dct4_instance_q15; |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 DCT4/IDCT4. |
|
* @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. |
|
* @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
|
* @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
|
* @param[in] N length of the DCT4. |
|
* @param[in] Nby2 half of the length of the DCT4. |
|
* @param[in] normalize normalizing factor. |
|
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
|
*/ |
|
arm_status arm_dct4_init_q15( |
|
arm_dct4_instance_q15 * S, |
|
arm_rfft_instance_q15 * S_RFFT, |
|
arm_cfft_radix4_instance_q15 * S_CFFT, |
|
uint16_t N, |
|
uint16_t Nby2, |
|
q15_t normalize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 DCT4/IDCT4. |
|
* @param[in] S points to an instance of the Q15 DCT4 structure. |
|
* @param[in] pState points to state buffer. |
|
* @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
|
*/ |
|
void arm_dct4_q15( |
|
const arm_dct4_instance_q15 * S, |
|
q15_t * pState, |
|
q15_t * pInlineBuffer); |
|
|
|
|
|
/** |
|
* @brief Floating-point vector addition. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_add_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q7 vector addition. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_add_q7( |
|
q7_t * pSrcA, |
|
q7_t * pSrcB, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q15 vector addition. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_add_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q31 vector addition. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_add_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Floating-point vector subtraction. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_sub_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q7 vector subtraction. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_sub_q7( |
|
q7_t * pSrcA, |
|
q7_t * pSrcB, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q15 vector subtraction. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_sub_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q31 vector subtraction. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_sub_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Multiplies a floating-point vector by a scalar. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] scale scale factor to be applied |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_scale_f32( |
|
float32_t * pSrc, |
|
float32_t scale, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Multiplies a Q7 vector by a scalar. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] scaleFract fractional portion of the scale value |
|
* @param[in] shift number of bits to shift the result by |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_scale_q7( |
|
q7_t * pSrc, |
|
q7_t scaleFract, |
|
int8_t shift, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Multiplies a Q15 vector by a scalar. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] scaleFract fractional portion of the scale value |
|
* @param[in] shift number of bits to shift the result by |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_scale_q15( |
|
q15_t * pSrc, |
|
q15_t scaleFract, |
|
int8_t shift, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Multiplies a Q31 vector by a scalar. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] scaleFract fractional portion of the scale value |
|
* @param[in] shift number of bits to shift the result by |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_scale_q31( |
|
q31_t * pSrc, |
|
q31_t scaleFract, |
|
int8_t shift, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q7 vector absolute value. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[out] pDst points to the output buffer |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_abs_q7( |
|
q7_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Floating-point vector absolute value. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[out] pDst points to the output buffer |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_abs_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q15 vector absolute value. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[out] pDst points to the output buffer |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_abs_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Q31 vector absolute value. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[out] pDst points to the output buffer |
|
* @param[in] blockSize number of samples in each vector |
|
*/ |
|
void arm_abs_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Dot product of floating-point vectors. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] blockSize number of samples in each vector |
|
* @param[out] result output result returned here |
|
*/ |
|
void arm_dot_prod_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
uint32_t blockSize, |
|
float32_t * result); |
|
|
|
|
|
/** |
|
* @brief Dot product of Q7 vectors. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] blockSize number of samples in each vector |
|
* @param[out] result output result returned here |
|
*/ |
|
void arm_dot_prod_q7( |
|
q7_t * pSrcA, |
|
q7_t * pSrcB, |
|
uint32_t blockSize, |
|
q31_t * result); |
|
|
|
|
|
/** |
|
* @brief Dot product of Q15 vectors. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] blockSize number of samples in each vector |
|
* @param[out] result output result returned here |
|
*/ |
|
void arm_dot_prod_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
uint32_t blockSize, |
|
q63_t * result); |
|
|
|
|
|
/** |
|
* @brief Dot product of Q31 vectors. |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] blockSize number of samples in each vector |
|
* @param[out] result output result returned here |
|
*/ |
|
void arm_dot_prod_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
uint32_t blockSize, |
|
q63_t * result); |
|
|
|
|
|
/** |
|
* @brief Shifts the elements of a Q7 vector a specified number of bits. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_shift_q7( |
|
q7_t * pSrc, |
|
int8_t shiftBits, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Shifts the elements of a Q15 vector a specified number of bits. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_shift_q15( |
|
q15_t * pSrc, |
|
int8_t shiftBits, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Shifts the elements of a Q31 vector a specified number of bits. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_shift_q31( |
|
q31_t * pSrc, |
|
int8_t shiftBits, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Adds a constant offset to a floating-point vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] offset is the offset to be added |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_offset_f32( |
|
float32_t * pSrc, |
|
float32_t offset, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Adds a constant offset to a Q7 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] offset is the offset to be added |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_offset_q7( |
|
q7_t * pSrc, |
|
q7_t offset, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Adds a constant offset to a Q15 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] offset is the offset to be added |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_offset_q15( |
|
q15_t * pSrc, |
|
q15_t offset, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Adds a constant offset to a Q31 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[in] offset is the offset to be added |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_offset_q31( |
|
q31_t * pSrc, |
|
q31_t offset, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Negates the elements of a floating-point vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_negate_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Negates the elements of a Q7 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_negate_q7( |
|
q7_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Negates the elements of a Q15 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_negate_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Negates the elements of a Q31 vector. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] blockSize number of samples in the vector |
|
*/ |
|
void arm_negate_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Copies the elements of a floating-point vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_copy_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Copies the elements of a Q7 vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_copy_q7( |
|
q7_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Copies the elements of a Q15 vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_copy_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Copies the elements of a Q31 vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_copy_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Fills a constant value into a floating-point vector. |
|
* @param[in] value input value to be filled |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_fill_f32( |
|
float32_t value, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Fills a constant value into a Q7 vector. |
|
* @param[in] value input value to be filled |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_fill_q7( |
|
q7_t value, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Fills a constant value into a Q15 vector. |
|
* @param[in] value input value to be filled |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_fill_q15( |
|
q15_t value, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Fills a constant value into a Q31 vector. |
|
* @param[in] value input value to be filled |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_fill_q31( |
|
q31_t value, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Convolution of floating-point sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_f32( |
|
float32_t * pSrcA, |
|
uint32_t srcALen, |
|
float32_t * pSrcB, |
|
uint32_t srcBLen, |
|
float32_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q15 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|
*/ |
|
void arm_conv_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q15 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_fast_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|
*/ |
|
void arm_conv_fast_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q31 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_fast_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q7 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
|
*/ |
|
void arm_conv_opt_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Convolution of Q7 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
|
*/ |
|
void arm_conv_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of floating-point sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_f32( |
|
float32_t * pSrcA, |
|
uint32_t srcALen, |
|
float32_t * pSrcB, |
|
uint32_t srcBLen, |
|
float32_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q15 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q15 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_fast_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_fast_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q31 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_fast_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q7 sequences |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_opt_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Partial convolution of Q7 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] firstIndex is the first output sample to start with. |
|
* @param[in] numPoints is the number of output points to be computed. |
|
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|
*/ |
|
arm_status arm_conv_partial_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst, |
|
uint32_t firstIndex, |
|
uint32_t numPoints); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 FIR decimator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t M; /**< decimation factor. */ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
} arm_fir_decimate_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 FIR decimator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t M; /**< decimation factor. */ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
} arm_fir_decimate_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point FIR decimator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t M; /**< decimation factor. */ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
} arm_fir_decimate_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point FIR decimator. |
|
* @param[in] S points to an instance of the floating-point FIR decimator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_decimate_f32( |
|
const arm_fir_decimate_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point FIR decimator. |
|
* @param[in,out] S points to an instance of the floating-point FIR decimator structure. |
|
* @param[in] numTaps number of coefficients in the filter. |
|
* @param[in] M decimation factor. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* <code>blockSize</code> is not a multiple of <code>M</code>. |
|
*/ |
|
arm_status arm_fir_decimate_init_f32( |
|
arm_fir_decimate_instance_f32 * S, |
|
uint16_t numTaps, |
|
uint8_t M, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 FIR decimator. |
|
* @param[in] S points to an instance of the Q15 FIR decimator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_decimate_q15( |
|
const arm_fir_decimate_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q15 FIR decimator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_decimate_fast_q15( |
|
const arm_fir_decimate_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 FIR decimator. |
|
* @param[in,out] S points to an instance of the Q15 FIR decimator structure. |
|
* @param[in] numTaps number of coefficients in the filter. |
|
* @param[in] M decimation factor. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* <code>blockSize</code> is not a multiple of <code>M</code>. |
|
*/ |
|
arm_status arm_fir_decimate_init_q15( |
|
arm_fir_decimate_instance_q15 * S, |
|
uint16_t numTaps, |
|
uint8_t M, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 FIR decimator. |
|
* @param[in] S points to an instance of the Q31 FIR decimator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_decimate_q31( |
|
const arm_fir_decimate_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
/** |
|
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
|
* @param[in] S points to an instance of the Q31 FIR decimator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_decimate_fast_q31( |
|
arm_fir_decimate_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 FIR decimator. |
|
* @param[in,out] S points to an instance of the Q31 FIR decimator structure. |
|
* @param[in] numTaps number of coefficients in the filter. |
|
* @param[in] M decimation factor. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* <code>blockSize</code> is not a multiple of <code>M</code>. |
|
*/ |
|
arm_status arm_fir_decimate_init_q31( |
|
arm_fir_decimate_instance_q31 * S, |
|
uint16_t numTaps, |
|
uint8_t M, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 FIR interpolator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t L; /**< upsample factor. */ |
|
uint16_t phaseLength; /**< length of each polyphase filter component. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
|
} arm_fir_interpolate_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 FIR interpolator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t L; /**< upsample factor. */ |
|
uint16_t phaseLength; /**< length of each polyphase filter component. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
|
} arm_fir_interpolate_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point FIR interpolator. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t L; /**< upsample factor. */ |
|
uint16_t phaseLength; /**< length of each polyphase filter component. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
|
} arm_fir_interpolate_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 FIR interpolator. |
|
* @param[in] S points to an instance of the Q15 FIR interpolator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_interpolate_q15( |
|
const arm_fir_interpolate_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 FIR interpolator. |
|
* @param[in,out] S points to an instance of the Q15 FIR interpolator structure. |
|
* @param[in] L upsample factor. |
|
* @param[in] numTaps number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficient buffer. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
|
*/ |
|
arm_status arm_fir_interpolate_init_q15( |
|
arm_fir_interpolate_instance_q15 * S, |
|
uint8_t L, |
|
uint16_t numTaps, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 FIR interpolator. |
|
* @param[in] S points to an instance of the Q15 FIR interpolator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_interpolate_q31( |
|
const arm_fir_interpolate_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 FIR interpolator. |
|
* @param[in,out] S points to an instance of the Q31 FIR interpolator structure. |
|
* @param[in] L upsample factor. |
|
* @param[in] numTaps number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficient buffer. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
|
*/ |
|
arm_status arm_fir_interpolate_init_q31( |
|
arm_fir_interpolate_instance_q31 * S, |
|
uint8_t L, |
|
uint16_t numTaps, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point FIR interpolator. |
|
* @param[in] S points to an instance of the floating-point FIR interpolator structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_interpolate_f32( |
|
const arm_fir_interpolate_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point FIR interpolator. |
|
* @param[in,out] S points to an instance of the floating-point FIR interpolator structure. |
|
* @param[in] L upsample factor. |
|
* @param[in] numTaps number of filter coefficients in the filter. |
|
* @param[in] pCoeffs points to the filter coefficient buffer. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] blockSize number of input samples to process per call. |
|
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
|
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
|
*/ |
|
arm_status arm_fir_interpolate_init_f32( |
|
arm_fir_interpolate_instance_f32 * S, |
|
uint8_t L, |
|
uint16_t numTaps, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the high precision Q31 Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
|
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
|
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
|
} arm_biquad_cas_df1_32x64_ins_q31; |
|
|
|
|
|
/** |
|
* @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cas_df1_32x64_q31( |
|
const arm_biquad_cas_df1_32x64_ins_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
|
*/ |
|
void arm_biquad_cas_df1_32x64_init_q31( |
|
arm_biquad_cas_df1_32x64_ins_q31 * S, |
|
uint8_t numStages, |
|
q31_t * pCoeffs, |
|
q63_t * pState, |
|
uint8_t postShift); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
|
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
|
} arm_biquad_cascade_df2T_instance_f32; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
|
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
|
} arm_biquad_cascade_stereo_df2T_instance_f32; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
|
float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
|
float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
|
} arm_biquad_cascade_df2T_instance_f64; |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
|
* @param[in] S points to an instance of the filter data structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df2T_f32( |
|
const arm_biquad_cascade_df2T_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
|
* @param[in] S points to an instance of the filter data structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_stereo_df2T_f32( |
|
const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
|
* @param[in] S points to an instance of the filter data structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_biquad_cascade_df2T_f64( |
|
const arm_biquad_cascade_df2T_instance_f64 * S, |
|
float64_t * pSrc, |
|
float64_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the filter data structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
*/ |
|
void arm_biquad_cascade_df2T_init_f32( |
|
arm_biquad_cascade_df2T_instance_f32 * S, |
|
uint8_t numStages, |
|
float32_t * pCoeffs, |
|
float32_t * pState); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the filter data structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
*/ |
|
void arm_biquad_cascade_stereo_df2T_init_f32( |
|
arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
|
uint8_t numStages, |
|
float32_t * pCoeffs, |
|
float32_t * pState); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|
* @param[in,out] S points to an instance of the filter data structure. |
|
* @param[in] numStages number of 2nd order stages in the filter. |
|
* @param[in] pCoeffs points to the filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
*/ |
|
void arm_biquad_cascade_df2T_init_f64( |
|
arm_biquad_cascade_df2T_instance_f64 * S, |
|
uint8_t numStages, |
|
float64_t * pCoeffs, |
|
float64_t * pState); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 FIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of filter stages. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
|
} arm_fir_lattice_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 FIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of filter stages. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
|
} arm_fir_lattice_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point FIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of filter stages. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
|
} arm_fir_lattice_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 FIR lattice filter. |
|
* @param[in] S points to an instance of the Q15 FIR lattice structure. |
|
* @param[in] numStages number of filter stages. |
|
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
|
* @param[in] pState points to the state buffer. The array is of length numStages. |
|
*/ |
|
void arm_fir_lattice_init_q15( |
|
arm_fir_lattice_instance_q15 * S, |
|
uint16_t numStages, |
|
q15_t * pCoeffs, |
|
q15_t * pState); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 FIR lattice filter. |
|
* @param[in] S points to an instance of the Q15 FIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_lattice_q15( |
|
const arm_fir_lattice_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 FIR lattice filter. |
|
* @param[in] S points to an instance of the Q31 FIR lattice structure. |
|
* @param[in] numStages number of filter stages. |
|
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
|
* @param[in] pState points to the state buffer. The array is of length numStages. |
|
*/ |
|
void arm_fir_lattice_init_q31( |
|
arm_fir_lattice_instance_q31 * S, |
|
uint16_t numStages, |
|
q31_t * pCoeffs, |
|
q31_t * pState); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 FIR lattice filter. |
|
* @param[in] S points to an instance of the Q31 FIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_lattice_q31( |
|
const arm_fir_lattice_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point FIR lattice filter. |
|
* @param[in] S points to an instance of the floating-point FIR lattice structure. |
|
* @param[in] numStages number of filter stages. |
|
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
|
* @param[in] pState points to the state buffer. The array is of length numStages. |
|
*/ |
|
void arm_fir_lattice_init_f32( |
|
arm_fir_lattice_instance_f32 * S, |
|
uint16_t numStages, |
|
float32_t * pCoeffs, |
|
float32_t * pState); |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point FIR lattice filter. |
|
* @param[in] S points to an instance of the floating-point FIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_fir_lattice_f32( |
|
const arm_fir_lattice_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 IIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of stages in the filter. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
|
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
|
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
|
} arm_iir_lattice_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 IIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of stages in the filter. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
|
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
|
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
|
} arm_iir_lattice_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the floating-point IIR lattice filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numStages; /**< number of stages in the filter. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
|
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
|
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
|
} arm_iir_lattice_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point IIR lattice filter. |
|
* @param[in] S points to an instance of the floating-point IIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_iir_lattice_f32( |
|
const arm_iir_lattice_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point IIR lattice filter. |
|
* @param[in] S points to an instance of the floating-point IIR lattice structure. |
|
* @param[in] numStages number of stages in the filter. |
|
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
|
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
|
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_iir_lattice_init_f32( |
|
arm_iir_lattice_instance_f32 * S, |
|
uint16_t numStages, |
|
float32_t * pkCoeffs, |
|
float32_t * pvCoeffs, |
|
float32_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 IIR lattice filter. |
|
* @param[in] S points to an instance of the Q31 IIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_iir_lattice_q31( |
|
const arm_iir_lattice_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 IIR lattice filter. |
|
* @param[in] S points to an instance of the Q31 IIR lattice structure. |
|
* @param[in] numStages number of stages in the filter. |
|
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
|
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
|
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_iir_lattice_init_q31( |
|
arm_iir_lattice_instance_q31 * S, |
|
uint16_t numStages, |
|
q31_t * pkCoeffs, |
|
q31_t * pvCoeffs, |
|
q31_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 IIR lattice filter. |
|
* @param[in] S points to an instance of the Q15 IIR lattice structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_iir_lattice_q15( |
|
const arm_iir_lattice_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 IIR lattice filter. |
|
* @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. |
|
* @param[in] numStages number of stages in the filter. |
|
* @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
|
* @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
|
* @param[in] pState points to state buffer. The array is of length numStages+blockSize. |
|
* @param[in] blockSize number of samples to process per call. |
|
*/ |
|
void arm_iir_lattice_init_q15( |
|
arm_iir_lattice_instance_q15 * S, |
|
uint16_t numStages, |
|
q15_t * pkCoeffs, |
|
q15_t * pvCoeffs, |
|
q15_t * pState, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
float32_t mu; /**< step size that controls filter coefficient updates. */ |
|
} arm_lms_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for floating-point LMS filter. |
|
* @param[in] S points to an instance of the floating-point LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_f32( |
|
const arm_lms_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pRef, |
|
float32_t * pOut, |
|
float32_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for floating-point LMS filter. |
|
* @param[in] S points to an instance of the floating-point LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to the coefficient buffer. |
|
* @param[in] pState points to state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_init_f32( |
|
arm_lms_instance_f32 * S, |
|
uint16_t numTaps, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
float32_t mu, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
q15_t mu; /**< step size that controls filter coefficient updates. */ |
|
uint32_t postShift; /**< bit shift applied to coefficients. */ |
|
} arm_lms_instance_q15; |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 LMS filter. |
|
* @param[in] S points to an instance of the Q15 LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to the coefficient buffer. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
* @param[in] postShift bit shift applied to coefficients. |
|
*/ |
|
void arm_lms_init_q15( |
|
arm_lms_instance_q15 * S, |
|
uint16_t numTaps, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
q15_t mu, |
|
uint32_t blockSize, |
|
uint32_t postShift); |
|
|
|
|
|
/** |
|
* @brief Processing function for Q15 LMS filter. |
|
* @param[in] S points to an instance of the Q15 LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_q15( |
|
const arm_lms_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pRef, |
|
q15_t * pOut, |
|
q15_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q31 LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
q31_t mu; /**< step size that controls filter coefficient updates. */ |
|
uint32_t postShift; /**< bit shift applied to coefficients. */ |
|
} arm_lms_instance_q31; |
|
|
|
|
|
/** |
|
* @brief Processing function for Q31 LMS filter. |
|
* @param[in] S points to an instance of the Q15 LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_q31( |
|
const arm_lms_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pRef, |
|
q31_t * pOut, |
|
q31_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for Q31 LMS filter. |
|
* @param[in] S points to an instance of the Q31 LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to coefficient buffer. |
|
* @param[in] pState points to state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
* @param[in] postShift bit shift applied to coefficients. |
|
*/ |
|
void arm_lms_init_q31( |
|
arm_lms_instance_q31 * S, |
|
uint16_t numTaps, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
q31_t mu, |
|
uint32_t blockSize, |
|
uint32_t postShift); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point normalized LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
float32_t mu; /**< step size that control filter coefficient updates. */ |
|
float32_t energy; /**< saves previous frame energy. */ |
|
float32_t x0; /**< saves previous input sample. */ |
|
} arm_lms_norm_instance_f32; |
|
|
|
|
|
/** |
|
* @brief Processing function for floating-point normalized LMS filter. |
|
* @param[in] S points to an instance of the floating-point normalized LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_norm_f32( |
|
arm_lms_norm_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pRef, |
|
float32_t * pOut, |
|
float32_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for floating-point normalized LMS filter. |
|
* @param[in] S points to an instance of the floating-point LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to coefficient buffer. |
|
* @param[in] pState points to state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_norm_init_f32( |
|
arm_lms_norm_instance_f32 * S, |
|
uint16_t numTaps, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
float32_t mu, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q31 normalized LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
q31_t mu; /**< step size that controls filter coefficient updates. */ |
|
uint8_t postShift; /**< bit shift applied to coefficients. */ |
|
q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
|
q31_t energy; /**< saves previous frame energy. */ |
|
q31_t x0; /**< saves previous input sample. */ |
|
} arm_lms_norm_instance_q31; |
|
|
|
|
|
/** |
|
* @brief Processing function for Q31 normalized LMS filter. |
|
* @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_norm_q31( |
|
arm_lms_norm_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pRef, |
|
q31_t * pOut, |
|
q31_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for Q31 normalized LMS filter. |
|
* @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to coefficient buffer. |
|
* @param[in] pState points to state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
* @param[in] postShift bit shift applied to coefficients. |
|
*/ |
|
void arm_lms_norm_init_q31( |
|
arm_lms_norm_instance_q31 * S, |
|
uint16_t numTaps, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
q31_t mu, |
|
uint32_t blockSize, |
|
uint8_t postShift); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the Q15 normalized LMS filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< Number of coefficients in the filter. */ |
|
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
|
q15_t mu; /**< step size that controls filter coefficient updates. */ |
|
uint8_t postShift; /**< bit shift applied to coefficients. */ |
|
q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
|
q15_t energy; /**< saves previous frame energy. */ |
|
q15_t x0; /**< saves previous input sample. */ |
|
} arm_lms_norm_instance_q15; |
|
|
|
|
|
/** |
|
* @brief Processing function for Q15 normalized LMS filter. |
|
* @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[in] pRef points to the block of reference data. |
|
* @param[out] pOut points to the block of output data. |
|
* @param[out] pErr points to the block of error data. |
|
* @param[in] blockSize number of samples to process. |
|
*/ |
|
void arm_lms_norm_q15( |
|
arm_lms_norm_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pRef, |
|
q15_t * pOut, |
|
q15_t * pErr, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for Q15 normalized LMS filter. |
|
* @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
|
* @param[in] numTaps number of filter coefficients. |
|
* @param[in] pCoeffs points to coefficient buffer. |
|
* @param[in] pState points to state buffer. |
|
* @param[in] mu step size that controls filter coefficient updates. |
|
* @param[in] blockSize number of samples to process. |
|
* @param[in] postShift bit shift applied to coefficients. |
|
*/ |
|
void arm_lms_norm_init_q15( |
|
arm_lms_norm_instance_q15 * S, |
|
uint16_t numTaps, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
q15_t mu, |
|
uint32_t blockSize, |
|
uint8_t postShift); |
|
|
|
|
|
/** |
|
* @brief Correlation of floating-point sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
void arm_correlate_f32( |
|
float32_t * pSrcA, |
|
uint32_t srcALen, |
|
float32_t * pSrcB, |
|
uint32_t srcBLen, |
|
float32_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q15 sequences |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
*/ |
|
void arm_correlate_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
q15_t * pScratch); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q15 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
|
|
void arm_correlate_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
|
|
void arm_correlate_fast_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
*/ |
|
void arm_correlate_fast_opt_q15( |
|
q15_t * pSrcA, |
|
uint32_t srcALen, |
|
q15_t * pSrcB, |
|
uint32_t srcBLen, |
|
q15_t * pDst, |
|
q15_t * pScratch); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q31 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
void arm_correlate_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
void arm_correlate_fast_q31( |
|
q31_t * pSrcA, |
|
uint32_t srcALen, |
|
q31_t * pSrcB, |
|
uint32_t srcBLen, |
|
q31_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q7 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
|
*/ |
|
void arm_correlate_opt_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst, |
|
q15_t * pScratch1, |
|
q15_t * pScratch2); |
|
|
|
|
|
/** |
|
* @brief Correlation of Q7 sequences. |
|
* @param[in] pSrcA points to the first input sequence. |
|
* @param[in] srcALen length of the first input sequence. |
|
* @param[in] pSrcB points to the second input sequence. |
|
* @param[in] srcBLen length of the second input sequence. |
|
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
|
*/ |
|
void arm_correlate_q7( |
|
q7_t * pSrcA, |
|
uint32_t srcALen, |
|
q7_t * pSrcB, |
|
uint32_t srcBLen, |
|
q7_t * pDst); |
|
|
|
|
|
/** |
|
* @brief Instance structure for the floating-point sparse FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
|
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
|
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
|
} arm_fir_sparse_instance_f32; |
|
|
|
/** |
|
* @brief Instance structure for the Q31 sparse FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
|
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
|
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
|
} arm_fir_sparse_instance_q31; |
|
|
|
/** |
|
* @brief Instance structure for the Q15 sparse FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
|
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
|
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
|
} arm_fir_sparse_instance_q15; |
|
|
|
/** |
|
* @brief Instance structure for the Q7 sparse FIR filter. |
|
*/ |
|
typedef struct |
|
{ |
|
uint16_t numTaps; /**< number of coefficients in the filter. */ |
|
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
|
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
|
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
|
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
|
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
|
} arm_fir_sparse_instance_q7; |
|
|
|
|
|
/** |
|
* @brief Processing function for the floating-point sparse FIR filter. |
|
* @param[in] S points to an instance of the floating-point sparse FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] pScratchIn points to a temporary buffer of size blockSize. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_sparse_f32( |
|
arm_fir_sparse_instance_f32 * S, |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
float32_t * pScratchIn, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the floating-point sparse FIR filter. |
|
* @param[in,out] S points to an instance of the floating-point sparse FIR structure. |
|
* @param[in] numTaps number of nonzero coefficients in the filter. |
|
* @param[in] pCoeffs points to the array of filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] pTapDelay points to the array of offset times. |
|
* @param[in] maxDelay maximum offset time supported. |
|
* @param[in] blockSize number of samples that will be processed per block. |
|
*/ |
|
void arm_fir_sparse_init_f32( |
|
arm_fir_sparse_instance_f32 * S, |
|
uint16_t numTaps, |
|
float32_t * pCoeffs, |
|
float32_t * pState, |
|
int32_t * pTapDelay, |
|
uint16_t maxDelay, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q31 sparse FIR filter. |
|
* @param[in] S points to an instance of the Q31 sparse FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] pScratchIn points to a temporary buffer of size blockSize. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_sparse_q31( |
|
arm_fir_sparse_instance_q31 * S, |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
q31_t * pScratchIn, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q31 sparse FIR filter. |
|
* @param[in,out] S points to an instance of the Q31 sparse FIR structure. |
|
* @param[in] numTaps number of nonzero coefficients in the filter. |
|
* @param[in] pCoeffs points to the array of filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] pTapDelay points to the array of offset times. |
|
* @param[in] maxDelay maximum offset time supported. |
|
* @param[in] blockSize number of samples that will be processed per block. |
|
*/ |
|
void arm_fir_sparse_init_q31( |
|
arm_fir_sparse_instance_q31 * S, |
|
uint16_t numTaps, |
|
q31_t * pCoeffs, |
|
q31_t * pState, |
|
int32_t * pTapDelay, |
|
uint16_t maxDelay, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q15 sparse FIR filter. |
|
* @param[in] S points to an instance of the Q15 sparse FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] pScratchIn points to a temporary buffer of size blockSize. |
|
* @param[in] pScratchOut points to a temporary buffer of size blockSize. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_sparse_q15( |
|
arm_fir_sparse_instance_q15 * S, |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
q15_t * pScratchIn, |
|
q31_t * pScratchOut, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q15 sparse FIR filter. |
|
* @param[in,out] S points to an instance of the Q15 sparse FIR structure. |
|
* @param[in] numTaps number of nonzero coefficients in the filter. |
|
* @param[in] pCoeffs points to the array of filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] pTapDelay points to the array of offset times. |
|
* @param[in] maxDelay maximum offset time supported. |
|
* @param[in] blockSize number of samples that will be processed per block. |
|
*/ |
|
void arm_fir_sparse_init_q15( |
|
arm_fir_sparse_instance_q15 * S, |
|
uint16_t numTaps, |
|
q15_t * pCoeffs, |
|
q15_t * pState, |
|
int32_t * pTapDelay, |
|
uint16_t maxDelay, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Processing function for the Q7 sparse FIR filter. |
|
* @param[in] S points to an instance of the Q7 sparse FIR structure. |
|
* @param[in] pSrc points to the block of input data. |
|
* @param[out] pDst points to the block of output data |
|
* @param[in] pScratchIn points to a temporary buffer of size blockSize. |
|
* @param[in] pScratchOut points to a temporary buffer of size blockSize. |
|
* @param[in] blockSize number of input samples to process per call. |
|
*/ |
|
void arm_fir_sparse_q7( |
|
arm_fir_sparse_instance_q7 * S, |
|
q7_t * pSrc, |
|
q7_t * pDst, |
|
q7_t * pScratchIn, |
|
q31_t * pScratchOut, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Initialization function for the Q7 sparse FIR filter. |
|
* @param[in,out] S points to an instance of the Q7 sparse FIR structure. |
|
* @param[in] numTaps number of nonzero coefficients in the filter. |
|
* @param[in] pCoeffs points to the array of filter coefficients. |
|
* @param[in] pState points to the state buffer. |
|
* @param[in] pTapDelay points to the array of offset times. |
|
* @param[in] maxDelay maximum offset time supported. |
|
* @param[in] blockSize number of samples that will be processed per block. |
|
*/ |
|
void arm_fir_sparse_init_q7( |
|
arm_fir_sparse_instance_q7 * S, |
|
uint16_t numTaps, |
|
q7_t * pCoeffs, |
|
q7_t * pState, |
|
int32_t * pTapDelay, |
|
uint16_t maxDelay, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Floating-point sin_cos function. |
|
* @param[in] theta input value in degrees |
|
* @param[out] pSinVal points to the processed sine output. |
|
* @param[out] pCosVal points to the processed cos output. |
|
*/ |
|
void arm_sin_cos_f32( |
|
float32_t theta, |
|
float32_t * pSinVal, |
|
float32_t * pCosVal); |
|
|
|
|
|
/** |
|
* @brief Q31 sin_cos function. |
|
* @param[in] theta scaled input value in degrees |
|
* @param[out] pSinVal points to the processed sine output. |
|
* @param[out] pCosVal points to the processed cosine output. |
|
*/ |
|
void arm_sin_cos_q31( |
|
q31_t theta, |
|
q31_t * pSinVal, |
|
q31_t * pCosVal); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex conjugate. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_conj_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t numSamples); |
|
|
|
/** |
|
* @brief Q31 complex conjugate. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_conj_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q15 complex conjugate. |
|
* @param[in] pSrc points to the input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_conj_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex magnitude squared |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_squared_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q31 complex magnitude squared |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_squared_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q15 complex magnitude squared |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_squared_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @ingroup groupController |
|
*/ |
|
|
|
/** |
|
* @defgroup PID PID Motor Control |
|
* |
|
* A Proportional Integral Derivative (PID) controller is a generic feedback control |
|
* loop mechanism widely used in industrial control systems. |
|
* A PID controller is the most commonly used type of feedback controller. |
|
* |
|
* This set of functions implements (PID) controllers |
|
* for Q15, Q31, and floating-point data types. The functions operate on a single sample |
|
* of data and each call to the function returns a single processed value. |
|
* <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
|
* is the input sample value. The functions return the output value. |
|
* |
|
* \par Algorithm: |
|
* <pre> |
|
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
|
* A0 = Kp + Ki + Kd |
|
* A1 = (-Kp ) - (2 * Kd ) |
|
* A2 = Kd </pre> |
|
* |
|
* \par |
|
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
|
* |
|
* \par |
|
* \image html PID.gif "Proportional Integral Derivative Controller" |
|
* |
|
* \par |
|
* The PID controller calculates an "error" value as the difference between |
|
* the measured output and the reference input. |
|
* The controller attempts to minimize the error by adjusting the process control inputs. |
|
* The proportional value determines the reaction to the current error, |
|
* the integral value determines the reaction based on the sum of recent errors, |
|
* and the derivative value determines the reaction based on the rate at which the error has been changing. |
|
* |
|
* \par Instance Structure |
|
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
|
* A separate instance structure must be defined for each PID Controller. |
|
* There are separate instance structure declarations for each of the 3 supported data types. |
|
* |
|
* \par Reset Functions |
|
* There is also an associated reset function for each data type which clears the state array. |
|
* |
|
* \par Initialization Functions |
|
* There is also an associated initialization function for each data type. |
|
* The initialization function performs the following operations: |
|
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
|
* - Zeros out the values in the state buffer. |
|
* |
|
* \par |
|
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
|
* |
|
* \par Fixed-Point Behavior |
|
* Care must be taken when using the fixed-point versions of the PID Controller functions. |
|
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
|
* Refer to the function specific documentation below for usage guidelines. |
|
*/ |
|
|
|
/** |
|
* @addtogroup PID |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Process function for the floating-point PID Control. |
|
* @param[in,out] S is an instance of the floating-point PID Control structure |
|
* @param[in] in input sample to process |
|
* @return out processed output sample. |
|
*/ |
|
static __INLINE float32_t arm_pid_f32( |
|
arm_pid_instance_f32 * S, |
|
float32_t in) |
|
{ |
|
float32_t out; |
|
|
|
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
|
out = (S->A0 * in) + |
|
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
|
|
|
/* Update state */ |
|
S->state[1] = S->state[0]; |
|
S->state[0] = in; |
|
S->state[2] = out; |
|
|
|
/* return to application */ |
|
return (out); |
|
|
|
} |
|
|
|
/** |
|
* @brief Process function for the Q31 PID Control. |
|
* @param[in,out] S points to an instance of the Q31 PID Control structure |
|
* @param[in] in input sample to process |
|
* @return out processed output sample. |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using an internal 64-bit accumulator. |
|
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
|
* Thus, if the accumulator result overflows it wraps around rather than clip. |
|
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
|
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
|
*/ |
|
static __INLINE q31_t arm_pid_q31( |
|
arm_pid_instance_q31 * S, |
|
q31_t in) |
|
{ |
|
q63_t acc; |
|
q31_t out; |
|
|
|
/* acc = A0 * x[n] */ |
|
acc = (q63_t) S->A0 * in; |
|
|
|
/* acc += A1 * x[n-1] */ |
|
acc += (q63_t) S->A1 * S->state[0]; |
|
|
|
/* acc += A2 * x[n-2] */ |
|
acc += (q63_t) S->A2 * S->state[1]; |
|
|
|
/* convert output to 1.31 format to add y[n-1] */ |
|
out = (q31_t) (acc >> 31u); |
|
|
|
/* out += y[n-1] */ |
|
out += S->state[2]; |
|
|
|
/* Update state */ |
|
S->state[1] = S->state[0]; |
|
S->state[0] = in; |
|
S->state[2] = out; |
|
|
|
/* return to application */ |
|
return (out); |
|
} |
|
|
|
|
|
/** |
|
* @brief Process function for the Q15 PID Control. |
|
* @param[in,out] S points to an instance of the Q15 PID Control structure |
|
* @param[in] in input sample to process |
|
* @return out processed output sample. |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using a 64-bit internal accumulator. |
|
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
|
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
|
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
|
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
|
* Lastly, the accumulator is saturated to yield a result in 1.15 format. |
|
*/ |
|
static __INLINE q15_t arm_pid_q15( |
|
arm_pid_instance_q15 * S, |
|
q15_t in) |
|
{ |
|
q63_t acc; |
|
q15_t out; |
|
|
|
#ifndef ARM_MATH_CM0_FAMILY |
|
__SIMD32_TYPE *vstate; |
|
|
|
/* Implementation of PID controller */ |
|
|
|
/* acc = A0 * x[n] */ |
|
acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); |
|
|
|
/* acc += A1 * x[n-1] + A2 * x[n-2] */ |
|
vstate = __SIMD32_CONST(S->state); |
|
acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); |
|
#else |
|
/* acc = A0 * x[n] */ |
|
acc = ((q31_t) S->A0) * in; |
|
|
|
/* acc += A1 * x[n-1] + A2 * x[n-2] */ |
|
acc += (q31_t) S->A1 * S->state[0]; |
|
acc += (q31_t) S->A2 * S->state[1]; |
|
#endif |
|
|
|
/* acc += y[n-1] */ |
|
acc += (q31_t) S->state[2] << 15; |
|
|
|
/* saturate the output */ |
|
out = (q15_t) (__SSAT((acc >> 15), 16)); |
|
|
|
/* Update state */ |
|
S->state[1] = S->state[0]; |
|
S->state[0] = in; |
|
S->state[2] = out; |
|
|
|
/* return to application */ |
|
return (out); |
|
} |
|
|
|
/** |
|
* @} end of PID group |
|
*/ |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix inverse. |
|
* @param[in] src points to the instance of the input floating-point matrix structure. |
|
* @param[out] dst points to the instance of the output floating-point matrix structure. |
|
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
|
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
|
*/ |
|
arm_status arm_mat_inverse_f32( |
|
const arm_matrix_instance_f32 * src, |
|
arm_matrix_instance_f32 * dst); |
|
|
|
|
|
/** |
|
* @brief Floating-point matrix inverse. |
|
* @param[in] src points to the instance of the input floating-point matrix structure. |
|
* @param[out] dst points to the instance of the output floating-point matrix structure. |
|
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
|
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
|
*/ |
|
arm_status arm_mat_inverse_f64( |
|
const arm_matrix_instance_f64 * src, |
|
arm_matrix_instance_f64 * dst); |
|
|
|
|
|
|
|
/** |
|
* @ingroup groupController |
|
*/ |
|
|
|
/** |
|
* @defgroup clarke Vector Clarke Transform |
|
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
|
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
|
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
|
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
|
* \image html clarke.gif Stator current space vector and its components in (a,b). |
|
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
|
* can be calculated using only <code>Ia</code> and <code>Ib</code>. |
|
* |
|
* The function operates on a single sample of data and each call to the function returns the processed output. |
|
* The library provides separate functions for Q31 and floating-point data types. |
|
* \par Algorithm |
|
* \image html clarkeFormula.gif |
|
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
|
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
|
* \par Fixed-Point Behavior |
|
* Care must be taken when using the Q31 version of the Clarke transform. |
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered. |
|
* Refer to the function specific documentation below for usage guidelines. |
|
*/ |
|
|
|
/** |
|
* @addtogroup clarke |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* |
|
* @brief Floating-point Clarke transform |
|
* @param[in] Ia input three-phase coordinate <code>a</code> |
|
* @param[in] Ib input three-phase coordinate <code>b</code> |
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
|
*/ |
|
static __INLINE void arm_clarke_f32( |
|
float32_t Ia, |
|
float32_t Ib, |
|
float32_t * pIalpha, |
|
float32_t * pIbeta) |
|
{ |
|
/* Calculate pIalpha using the equation, pIalpha = Ia */ |
|
*pIalpha = Ia; |
|
|
|
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
|
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
|
} |
|
|
|
|
|
/** |
|
* @brief Clarke transform for Q31 version |
|
* @param[in] Ia input three-phase coordinate <code>a</code> |
|
* @param[in] Ib input three-phase coordinate <code>b</code> |
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using an internal 32-bit accumulator. |
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
|
* There is saturation on the addition, hence there is no risk of overflow. |
|
*/ |
|
static __INLINE void arm_clarke_q31( |
|
q31_t Ia, |
|
q31_t Ib, |
|
q31_t * pIalpha, |
|
q31_t * pIbeta) |
|
{ |
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
|
|
|
/* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
|
*pIalpha = Ia; |
|
|
|
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
|
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
|
|
|
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
|
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
|
|
|
/* pIbeta is calculated by adding the intermediate products */ |
|
*pIbeta = __QADD(product1, product2); |
|
} |
|
|
|
/** |
|
* @} end of clarke group |
|
*/ |
|
|
|
/** |
|
* @brief Converts the elements of the Q7 vector to Q31 vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_q7_to_q31( |
|
q7_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
|
|
/** |
|
* @ingroup groupController |
|
*/ |
|
|
|
/** |
|
* @defgroup inv_clarke Vector Inverse Clarke Transform |
|
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
|
* |
|
* The function operates on a single sample of data and each call to the function returns the processed output. |
|
* The library provides separate functions for Q31 and floating-point data types. |
|
* \par Algorithm |
|
* \image html clarkeInvFormula.gif |
|
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
|
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
|
* \par Fixed-Point Behavior |
|
* Care must be taken when using the Q31 version of the Clarke transform. |
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered. |
|
* Refer to the function specific documentation below for usage guidelines. |
|
*/ |
|
|
|
/** |
|
* @addtogroup inv_clarke |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Floating-point Inverse Clarke transform |
|
* @param[in] Ialpha input two-phase orthogonal vector axis alpha |
|
* @param[in] Ibeta input two-phase orthogonal vector axis beta |
|
* @param[out] pIa points to output three-phase coordinate <code>a</code> |
|
* @param[out] pIb points to output three-phase coordinate <code>b</code> |
|
*/ |
|
static __INLINE void arm_inv_clarke_f32( |
|
float32_t Ialpha, |
|
float32_t Ibeta, |
|
float32_t * pIa, |
|
float32_t * pIb) |
|
{ |
|
/* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
|
*pIa = Ialpha; |
|
|
|
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
|
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; |
|
} |
|
|
|
|
|
/** |
|
* @brief Inverse Clarke transform for Q31 version |
|
* @param[in] Ialpha input two-phase orthogonal vector axis alpha |
|
* @param[in] Ibeta input two-phase orthogonal vector axis beta |
|
* @param[out] pIa points to output three-phase coordinate <code>a</code> |
|
* @param[out] pIb points to output three-phase coordinate <code>b</code> |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using an internal 32-bit accumulator. |
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
|
* There is saturation on the subtraction, hence there is no risk of overflow. |
|
*/ |
|
static __INLINE void arm_inv_clarke_q31( |
|
q31_t Ialpha, |
|
q31_t Ibeta, |
|
q31_t * pIa, |
|
q31_t * pIb) |
|
{ |
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
|
|
|
/* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
|
*pIa = Ialpha; |
|
|
|
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
|
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
|
|
|
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
|
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
|
|
|
/* pIb is calculated by subtracting the products */ |
|
*pIb = __QSUB(product2, product1); |
|
} |
|
|
|
/** |
|
* @} end of inv_clarke group |
|
*/ |
|
|
|
/** |
|
* @brief Converts the elements of the Q7 vector to Q15 vector. |
|
* @param[in] pSrc input pointer |
|
* @param[out] pDst output pointer |
|
* @param[in] blockSize number of samples to process |
|
*/ |
|
void arm_q7_to_q15( |
|
q7_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
|
|
/** |
|
* @ingroup groupController |
|
*/ |
|
|
|
/** |
|
* @defgroup park Vector Park Transform |
|
* |
|
* Forward Park transform converts the input two-coordinate vector to flux and torque components. |
|
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
|
* from the stationary to the moving reference frame and control the spatial relationship between |
|
* the stator vector current and rotor flux vector. |
|
* If we consider the d axis aligned with the rotor flux, the diagram below shows the |
|
* current vector and the relationship from the two reference frames: |
|
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
|
* |
|
* The function operates on a single sample of data and each call to the function returns the processed output. |
|
* The library provides separate functions for Q31 and floating-point data types. |
|
* \par Algorithm |
|
* \image html parkFormula.gif |
|
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
|
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
|
* cosine and sine values of theta (rotor flux position). |
|
* \par Fixed-Point Behavior |
|
* Care must be taken when using the Q31 version of the Park transform. |
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered. |
|
* Refer to the function specific documentation below for usage guidelines. |
|
*/ |
|
|
|
/** |
|
* @addtogroup park |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Floating-point Park transform |
|
* @param[in] Ialpha input two-phase vector coordinate alpha |
|
* @param[in] Ibeta input two-phase vector coordinate beta |
|
* @param[out] pId points to output rotor reference frame d |
|
* @param[out] pIq points to output rotor reference frame q |
|
* @param[in] sinVal sine value of rotation angle theta |
|
* @param[in] cosVal cosine value of rotation angle theta |
|
* |
|
* The function implements the forward Park transform. |
|
* |
|
*/ |
|
static __INLINE void arm_park_f32( |
|
float32_t Ialpha, |
|
float32_t Ibeta, |
|
float32_t * pId, |
|
float32_t * pIq, |
|
float32_t sinVal, |
|
float32_t cosVal) |
|
{ |
|
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
|
*pId = Ialpha * cosVal + Ibeta * sinVal; |
|
|
|
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
|
*pIq = -Ialpha * sinVal + Ibeta * cosVal; |
|
} |
|
|
|
|
|
/** |
|
* @brief Park transform for Q31 version |
|
* @param[in] Ialpha input two-phase vector coordinate alpha |
|
* @param[in] Ibeta input two-phase vector coordinate beta |
|
* @param[out] pId points to output rotor reference frame d |
|
* @param[out] pIq points to output rotor reference frame q |
|
* @param[in] sinVal sine value of rotation angle theta |
|
* @param[in] cosVal cosine value of rotation angle theta |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using an internal 32-bit accumulator. |
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
|
* There is saturation on the addition and subtraction, hence there is no risk of overflow. |
|
*/ |
|
static __INLINE void arm_park_q31( |
|
q31_t Ialpha, |
|
q31_t Ibeta, |
|
q31_t * pId, |
|
q31_t * pIq, |
|
q31_t sinVal, |
|
q31_t cosVal) |
|
{ |
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
|
q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
|
|
|
/* Intermediate product is calculated by (Ialpha * cosVal) */ |
|
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
|
|
|
/* Intermediate product is calculated by (Ibeta * sinVal) */ |
|
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
|
|
|
|
|
/* Intermediate product is calculated by (Ialpha * sinVal) */ |
|
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
|
|
|
/* Intermediate product is calculated by (Ibeta * cosVal) */ |
|
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
|
|
|
/* Calculate pId by adding the two intermediate products 1 and 2 */ |
|
*pId = __QADD(product1, product2); |
|
|
|
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
|
*pIq = __QSUB(product4, product3); |
|
} |
|
|
|
/** |
|
* @} end of park group |
|
*/ |
|
|
|
/** |
|
* @brief Converts the elements of the Q7 vector to floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q7_to_float( |
|
q7_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @ingroup groupController |
|
*/ |
|
|
|
/** |
|
* @defgroup inv_park Vector Inverse Park transform |
|
* Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
|
* |
|
* The function operates on a single sample of data and each call to the function returns the processed output. |
|
* The library provides separate functions for Q31 and floating-point data types. |
|
* \par Algorithm |
|
* \image html parkInvFormula.gif |
|
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
|
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
|
* cosine and sine values of theta (rotor flux position). |
|
* \par Fixed-Point Behavior |
|
* Care must be taken when using the Q31 version of the Park transform. |
|
* In particular, the overflow and saturation behavior of the accumulator used must be considered. |
|
* Refer to the function specific documentation below for usage guidelines. |
|
*/ |
|
|
|
/** |
|
* @addtogroup inv_park |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Floating-point Inverse Park transform |
|
* @param[in] Id input coordinate of rotor reference frame d |
|
* @param[in] Iq input coordinate of rotor reference frame q |
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
|
* @param[in] sinVal sine value of rotation angle theta |
|
* @param[in] cosVal cosine value of rotation angle theta |
|
*/ |
|
static __INLINE void arm_inv_park_f32( |
|
float32_t Id, |
|
float32_t Iq, |
|
float32_t * pIalpha, |
|
float32_t * pIbeta, |
|
float32_t sinVal, |
|
float32_t cosVal) |
|
{ |
|
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
|
*pIalpha = Id * cosVal - Iq * sinVal; |
|
|
|
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
|
*pIbeta = Id * sinVal + Iq * cosVal; |
|
} |
|
|
|
|
|
/** |
|
* @brief Inverse Park transform for Q31 version |
|
* @param[in] Id input coordinate of rotor reference frame d |
|
* @param[in] Iq input coordinate of rotor reference frame q |
|
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
|
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
|
* @param[in] sinVal sine value of rotation angle theta |
|
* @param[in] cosVal cosine value of rotation angle theta |
|
* |
|
* <b>Scaling and Overflow Behavior:</b> |
|
* \par |
|
* The function is implemented using an internal 32-bit accumulator. |
|
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
|
* There is saturation on the addition, hence there is no risk of overflow. |
|
*/ |
|
static __INLINE void arm_inv_park_q31( |
|
q31_t Id, |
|
q31_t Iq, |
|
q31_t * pIalpha, |
|
q31_t * pIbeta, |
|
q31_t sinVal, |
|
q31_t cosVal) |
|
{ |
|
q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
|
q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
|
|
|
/* Intermediate product is calculated by (Id * cosVal) */ |
|
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
|
|
|
/* Intermediate product is calculated by (Iq * sinVal) */ |
|
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
|
|
|
|
|
/* Intermediate product is calculated by (Id * sinVal) */ |
|
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
|
|
|
/* Intermediate product is calculated by (Iq * cosVal) */ |
|
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
|
|
|
/* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
|
*pIalpha = __QSUB(product1, product2); |
|
|
|
/* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
|
*pIbeta = __QADD(product4, product3); |
|
} |
|
|
|
/** |
|
* @} end of Inverse park group |
|
*/ |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q31 vector to floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q31_to_float( |
|
q31_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
/** |
|
* @ingroup groupInterpolation |
|
*/ |
|
|
|
/** |
|
* @defgroup LinearInterpolate Linear Interpolation |
|
* |
|
* Linear interpolation is a method of curve fitting using linear polynomials. |
|
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
|
* |
|
* \par |
|
* \image html LinearInterp.gif "Linear interpolation" |
|
* |
|
* \par |
|
* A Linear Interpolate function calculates an output value(y), for the input(x) |
|
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
|
* |
|
* \par Algorithm: |
|
* <pre> |
|
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
|
* where x0, x1 are nearest values of input x |
|
* y0, y1 are nearest values to output y |
|
* </pre> |
|
* |
|
* \par |
|
* This set of functions implements Linear interpolation process |
|
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
|
* sample of data and each call to the function returns a single processed value. |
|
* <code>S</code> points to an instance of the Linear Interpolate function data structure. |
|
* <code>x</code> is the input sample value. The functions returns the output value. |
|
* |
|
* \par |
|
* if x is outside of the table boundary, Linear interpolation returns first value of the table |
|
* if x is below input range and returns last value of table if x is above range. |
|
*/ |
|
|
|
/** |
|
* @addtogroup LinearInterpolate |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Process function for the floating-point Linear Interpolation Function. |
|
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure |
|
* @param[in] x input sample to process |
|
* @return y processed output sample. |
|
* |
|
*/ |
|
static __INLINE float32_t arm_linear_interp_f32( |
|
arm_linear_interp_instance_f32 * S, |
|
float32_t x) |
|
{ |
|
float32_t y; |
|
float32_t x0, x1; /* Nearest input values */ |
|
float32_t y0, y1; /* Nearest output values */ |
|
float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
|
int32_t i; /* Index variable */ |
|
float32_t *pYData = S->pYData; /* pointer to output table */ |
|
|
|
/* Calculation of index */ |
|
i = (int32_t) ((x - S->x1) / xSpacing); |
|
|
|
if(i < 0) |
|
{ |
|
/* Iniatilize output for below specified range as least output value of table */ |
|
y = pYData[0]; |
|
} |
|
else if((uint32_t)i >= S->nValues) |
|
{ |
|
/* Iniatilize output for above specified range as last output value of table */ |
|
y = pYData[S->nValues - 1]; |
|
} |
|
else |
|
{ |
|
/* Calculation of nearest input values */ |
|
x0 = S->x1 + i * xSpacing; |
|
x1 = S->x1 + (i + 1) * xSpacing; |
|
|
|
/* Read of nearest output values */ |
|
y0 = pYData[i]; |
|
y1 = pYData[i + 1]; |
|
|
|
/* Calculation of output */ |
|
y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
|
|
|
} |
|
|
|
/* returns output value */ |
|
return (y); |
|
} |
|
|
|
|
|
/** |
|
* |
|
* @brief Process function for the Q31 Linear Interpolation Function. |
|
* @param[in] pYData pointer to Q31 Linear Interpolation table |
|
* @param[in] x input sample to process |
|
* @param[in] nValues number of table values |
|
* @return y processed output sample. |
|
* |
|
* \par |
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
|
* This function can support maximum of table size 2^12. |
|
* |
|
*/ |
|
static __INLINE q31_t arm_linear_interp_q31( |
|
q31_t * pYData, |
|
q31_t x, |
|
uint32_t nValues) |
|
{ |
|
q31_t y; /* output */ |
|
q31_t y0, y1; /* Nearest output values */ |
|
q31_t fract; /* fractional part */ |
|
int32_t index; /* Index to read nearest output values */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
index = ((x & (q31_t)0xFFF00000) >> 20); |
|
|
|
if(index >= (int32_t)(nValues - 1)) |
|
{ |
|
return (pYData[nValues - 1]); |
|
} |
|
else if(index < 0) |
|
{ |
|
return (pYData[0]); |
|
} |
|
else |
|
{ |
|
/* 20 bits for the fractional part */ |
|
/* shift left by 11 to keep fract in 1.31 format */ |
|
fract = (x & 0x000FFFFF) << 11; |
|
|
|
/* Read two nearest output values from the index in 1.31(q31) format */ |
|
y0 = pYData[index]; |
|
y1 = pYData[index + 1]; |
|
|
|
/* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
|
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
|
|
|
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
|
y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
|
|
|
/* Convert y to 1.31 format */ |
|
return (y << 1u); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* |
|
* @brief Process function for the Q15 Linear Interpolation Function. |
|
* @param[in] pYData pointer to Q15 Linear Interpolation table |
|
* @param[in] x input sample to process |
|
* @param[in] nValues number of table values |
|
* @return y processed output sample. |
|
* |
|
* \par |
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
|
* This function can support maximum of table size 2^12. |
|
* |
|
*/ |
|
static __INLINE q15_t arm_linear_interp_q15( |
|
q15_t * pYData, |
|
q31_t x, |
|
uint32_t nValues) |
|
{ |
|
q63_t y; /* output */ |
|
q15_t y0, y1; /* Nearest output values */ |
|
q31_t fract; /* fractional part */ |
|
int32_t index; /* Index to read nearest output values */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
index = ((x & (int32_t)0xFFF00000) >> 20); |
|
|
|
if(index >= (int32_t)(nValues - 1)) |
|
{ |
|
return (pYData[nValues - 1]); |
|
} |
|
else if(index < 0) |
|
{ |
|
return (pYData[0]); |
|
} |
|
else |
|
{ |
|
/* 20 bits for the fractional part */ |
|
/* fract is in 12.20 format */ |
|
fract = (x & 0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index */ |
|
y0 = pYData[index]; |
|
y1 = pYData[index + 1]; |
|
|
|
/* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
|
y = ((q63_t) y0 * (0xFFFFF - fract)); |
|
|
|
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
|
y += ((q63_t) y1 * (fract)); |
|
|
|
/* convert y to 1.15 format */ |
|
return (q15_t) (y >> 20); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* |
|
* @brief Process function for the Q7 Linear Interpolation Function. |
|
* @param[in] pYData pointer to Q7 Linear Interpolation table |
|
* @param[in] x input sample to process |
|
* @param[in] nValues number of table values |
|
* @return y processed output sample. |
|
* |
|
* \par |
|
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
|
* This function can support maximum of table size 2^12. |
|
*/ |
|
static __INLINE q7_t arm_linear_interp_q7( |
|
q7_t * pYData, |
|
q31_t x, |
|
uint32_t nValues) |
|
{ |
|
q31_t y; /* output */ |
|
q7_t y0, y1; /* Nearest output values */ |
|
q31_t fract; /* fractional part */ |
|
uint32_t index; /* Index to read nearest output values */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
if (x < 0) |
|
{ |
|
return (pYData[0]); |
|
} |
|
index = (x >> 20) & 0xfff; |
|
|
|
if(index >= (nValues - 1)) |
|
{ |
|
return (pYData[nValues - 1]); |
|
} |
|
else |
|
{ |
|
/* 20 bits for the fractional part */ |
|
/* fract is in 12.20 format */ |
|
fract = (x & 0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index and are in 1.7(q7) format */ |
|
y0 = pYData[index]; |
|
y1 = pYData[index + 1]; |
|
|
|
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
|
y = ((y0 * (0xFFFFF - fract))); |
|
|
|
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
|
y += (y1 * fract); |
|
|
|
/* convert y to 1.7(q7) format */ |
|
return (q7_t) (y >> 20); |
|
} |
|
} |
|
|
|
/** |
|
* @} end of LinearInterpolate group |
|
*/ |
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric sine function for floating-point data. |
|
* @param[in] x input value in radians. |
|
* @return sin(x). |
|
*/ |
|
float32_t arm_sin_f32( |
|
float32_t x); |
|
|
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric sine function for Q31 data. |
|
* @param[in] x Scaled input value in radians. |
|
* @return sin(x). |
|
*/ |
|
q31_t arm_sin_q31( |
|
q31_t x); |
|
|
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric sine function for Q15 data. |
|
* @param[in] x Scaled input value in radians. |
|
* @return sin(x). |
|
*/ |
|
q15_t arm_sin_q15( |
|
q15_t x); |
|
|
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric cosine function for floating-point data. |
|
* @param[in] x input value in radians. |
|
* @return cos(x). |
|
*/ |
|
float32_t arm_cos_f32( |
|
float32_t x); |
|
|
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric cosine function for Q31 data. |
|
* @param[in] x Scaled input value in radians. |
|
* @return cos(x). |
|
*/ |
|
q31_t arm_cos_q31( |
|
q31_t x); |
|
|
|
|
|
/** |
|
* @brief Fast approximation to the trigonometric cosine function for Q15 data. |
|
* @param[in] x Scaled input value in radians. |
|
* @return cos(x). |
|
*/ |
|
q15_t arm_cos_q15( |
|
q15_t x); |
|
|
|
|
|
/** |
|
* @ingroup groupFastMath |
|
*/ |
|
|
|
|
|
/** |
|
* @defgroup SQRT Square Root |
|
* |
|
* Computes the square root of a number. |
|
* There are separate functions for Q15, Q31, and floating-point data types. |
|
* The square root function is computed using the Newton-Raphson algorithm. |
|
* This is an iterative algorithm of the form: |
|
* <pre> |
|
* x1 = x0 - f(x0)/f'(x0) |
|
* </pre> |
|
* where <code>x1</code> is the current estimate, |
|
* <code>x0</code> is the previous estimate, and |
|
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
|
* For the square root function, the algorithm reduces to: |
|
* <pre> |
|
* x0 = in/2 [initial guess] |
|
* x1 = 1/2 * ( x0 + in / x0) [each iteration] |
|
* </pre> |
|
*/ |
|
|
|
|
|
/** |
|
* @addtogroup SQRT |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Floating-point square root function. |
|
* @param[in] in input value. |
|
* @param[out] pOut square root of input value. |
|
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
|
* <code>in</code> is negative value and returns zero output for negative values. |
|
*/ |
|
static __INLINE arm_status arm_sqrt_f32( |
|
float32_t in, |
|
float32_t * pOut) |
|
{ |
|
if(in >= 0.0f) |
|
{ |
|
|
|
#if (__FPU_USED == 1) && defined ( __CC_ARM ) |
|
*pOut = __sqrtf(in); |
|
#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) |
|
*pOut = __builtin_sqrtf(in); |
|
#elif (__FPU_USED == 1) && defined(__GNUC__) |
|
*pOut = __builtin_sqrtf(in); |
|
#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) |
|
__ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); |
|
#else |
|
*pOut = sqrtf(in); |
|
#endif |
|
|
|
return (ARM_MATH_SUCCESS); |
|
} |
|
else |
|
{ |
|
*pOut = 0.0f; |
|
return (ARM_MATH_ARGUMENT_ERROR); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* @brief Q31 square root function. |
|
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
|
* @param[out] pOut square root of input value. |
|
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
|
* <code>in</code> is negative value and returns zero output for negative values. |
|
*/ |
|
arm_status arm_sqrt_q31( |
|
q31_t in, |
|
q31_t * pOut); |
|
|
|
|
|
/** |
|
* @brief Q15 square root function. |
|
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
|
* @param[out] pOut square root of input value. |
|
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
|
* <code>in</code> is negative value and returns zero output for negative values. |
|
*/ |
|
arm_status arm_sqrt_q15( |
|
q15_t in, |
|
q15_t * pOut); |
|
|
|
/** |
|
* @} end of SQRT group |
|
*/ |
|
|
|
|
|
/** |
|
* @brief floating-point Circular write function. |
|
*/ |
|
static __INLINE void arm_circularWrite_f32( |
|
int32_t * circBuffer, |
|
int32_t L, |
|
uint16_t * writeOffset, |
|
int32_t bufferInc, |
|
const int32_t * src, |
|
int32_t srcInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0u; |
|
int32_t wOffset; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location where the input samples to be copied */ |
|
wOffset = *writeOffset; |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the input sample to the circular buffer */ |
|
circBuffer[wOffset] = *src; |
|
|
|
/* Update the input pointer */ |
|
src += srcInc; |
|
|
|
/* Circularly update wOffset. Watch out for positive and negative value */ |
|
wOffset += bufferInc; |
|
if(wOffset >= L) |
|
wOffset -= L; |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*writeOffset = (uint16_t)wOffset; |
|
} |
|
|
|
|
|
|
|
/** |
|
* @brief floating-point Circular Read function. |
|
*/ |
|
static __INLINE void arm_circularRead_f32( |
|
int32_t * circBuffer, |
|
int32_t L, |
|
int32_t * readOffset, |
|
int32_t bufferInc, |
|
int32_t * dst, |
|
int32_t * dst_base, |
|
int32_t dst_length, |
|
int32_t dstInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0u; |
|
int32_t rOffset, dst_end; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location from where the input samples to be read */ |
|
rOffset = *readOffset; |
|
dst_end = (int32_t) (dst_base + dst_length); |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the sample from the circular buffer to the destination buffer */ |
|
*dst = circBuffer[rOffset]; |
|
|
|
/* Update the input pointer */ |
|
dst += dstInc; |
|
|
|
if(dst == (int32_t *) dst_end) |
|
{ |
|
dst = dst_base; |
|
} |
|
|
|
/* Circularly update rOffset. Watch out for positive and negative value */ |
|
rOffset += bufferInc; |
|
|
|
if(rOffset >= L) |
|
{ |
|
rOffset -= L; |
|
} |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*readOffset = rOffset; |
|
} |
|
|
|
|
|
/** |
|
* @brief Q15 Circular write function. |
|
*/ |
|
static __INLINE void arm_circularWrite_q15( |
|
q15_t * circBuffer, |
|
int32_t L, |
|
uint16_t * writeOffset, |
|
int32_t bufferInc, |
|
const q15_t * src, |
|
int32_t srcInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0u; |
|
int32_t wOffset; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location where the input samples to be copied */ |
|
wOffset = *writeOffset; |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the input sample to the circular buffer */ |
|
circBuffer[wOffset] = *src; |
|
|
|
/* Update the input pointer */ |
|
src += srcInc; |
|
|
|
/* Circularly update wOffset. Watch out for positive and negative value */ |
|
wOffset += bufferInc; |
|
if(wOffset >= L) |
|
wOffset -= L; |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*writeOffset = (uint16_t)wOffset; |
|
} |
|
|
|
|
|
/** |
|
* @brief Q15 Circular Read function. |
|
*/ |
|
static __INLINE void arm_circularRead_q15( |
|
q15_t * circBuffer, |
|
int32_t L, |
|
int32_t * readOffset, |
|
int32_t bufferInc, |
|
q15_t * dst, |
|
q15_t * dst_base, |
|
int32_t dst_length, |
|
int32_t dstInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0; |
|
int32_t rOffset, dst_end; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location from where the input samples to be read */ |
|
rOffset = *readOffset; |
|
|
|
dst_end = (int32_t) (dst_base + dst_length); |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the sample from the circular buffer to the destination buffer */ |
|
*dst = circBuffer[rOffset]; |
|
|
|
/* Update the input pointer */ |
|
dst += dstInc; |
|
|
|
if(dst == (q15_t *) dst_end) |
|
{ |
|
dst = dst_base; |
|
} |
|
|
|
/* Circularly update wOffset. Watch out for positive and negative value */ |
|
rOffset += bufferInc; |
|
|
|
if(rOffset >= L) |
|
{ |
|
rOffset -= L; |
|
} |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*readOffset = rOffset; |
|
} |
|
|
|
|
|
/** |
|
* @brief Q7 Circular write function. |
|
*/ |
|
static __INLINE void arm_circularWrite_q7( |
|
q7_t * circBuffer, |
|
int32_t L, |
|
uint16_t * writeOffset, |
|
int32_t bufferInc, |
|
const q7_t * src, |
|
int32_t srcInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0u; |
|
int32_t wOffset; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location where the input samples to be copied */ |
|
wOffset = *writeOffset; |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the input sample to the circular buffer */ |
|
circBuffer[wOffset] = *src; |
|
|
|
/* Update the input pointer */ |
|
src += srcInc; |
|
|
|
/* Circularly update wOffset. Watch out for positive and negative value */ |
|
wOffset += bufferInc; |
|
if(wOffset >= L) |
|
wOffset -= L; |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*writeOffset = (uint16_t)wOffset; |
|
} |
|
|
|
|
|
/** |
|
* @brief Q7 Circular Read function. |
|
*/ |
|
static __INLINE void arm_circularRead_q7( |
|
q7_t * circBuffer, |
|
int32_t L, |
|
int32_t * readOffset, |
|
int32_t bufferInc, |
|
q7_t * dst, |
|
q7_t * dst_base, |
|
int32_t dst_length, |
|
int32_t dstInc, |
|
uint32_t blockSize) |
|
{ |
|
uint32_t i = 0; |
|
int32_t rOffset, dst_end; |
|
|
|
/* Copy the value of Index pointer that points |
|
* to the current location from where the input samples to be read */ |
|
rOffset = *readOffset; |
|
|
|
dst_end = (int32_t) (dst_base + dst_length); |
|
|
|
/* Loop over the blockSize */ |
|
i = blockSize; |
|
|
|
while(i > 0u) |
|
{ |
|
/* copy the sample from the circular buffer to the destination buffer */ |
|
*dst = circBuffer[rOffset]; |
|
|
|
/* Update the input pointer */ |
|
dst += dstInc; |
|
|
|
if(dst == (q7_t *) dst_end) |
|
{ |
|
dst = dst_base; |
|
} |
|
|
|
/* Circularly update rOffset. Watch out for positive and negative value */ |
|
rOffset += bufferInc; |
|
|
|
if(rOffset >= L) |
|
{ |
|
rOffset -= L; |
|
} |
|
|
|
/* Decrement the loop counter */ |
|
i--; |
|
} |
|
|
|
/* Update the index pointer */ |
|
*readOffset = rOffset; |
|
} |
|
|
|
|
|
/** |
|
* @brief Sum of the squares of the elements of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_power_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q63_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Sum of the squares of the elements of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_power_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Sum of the squares of the elements of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_power_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q63_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Sum of the squares of the elements of a Q7 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_power_q7( |
|
q7_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Mean value of a Q7 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_mean_q7( |
|
q7_t * pSrc, |
|
uint32_t blockSize, |
|
q7_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Mean value of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_mean_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Mean value of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_mean_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Mean value of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_mean_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Variance of the elements of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_var_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Variance of the elements of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_var_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Variance of the elements of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_var_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Root Mean Square of the elements of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_rms_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Root Mean Square of the elements of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_rms_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Root Mean Square of the elements of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_rms_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Standard deviation of the elements of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_std_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Standard deviation of the elements of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_std_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Standard deviation of the elements of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output value. |
|
*/ |
|
void arm_std_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex magnitude |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_f32( |
|
float32_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q31 complex magnitude |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_q31( |
|
q31_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q15 complex magnitude |
|
* @param[in] pSrc points to the complex input vector |
|
* @param[out] pDst points to the real output vector |
|
* @param[in] numSamples number of complex samples in the input vector |
|
*/ |
|
void arm_cmplx_mag_q15( |
|
q15_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q15 complex dot product |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
* @param[out] realResult real part of the result returned here |
|
* @param[out] imagResult imaginary part of the result returned here |
|
*/ |
|
void arm_cmplx_dot_prod_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
uint32_t numSamples, |
|
q31_t * realResult, |
|
q31_t * imagResult); |
|
|
|
|
|
/** |
|
* @brief Q31 complex dot product |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
* @param[out] realResult real part of the result returned here |
|
* @param[out] imagResult imaginary part of the result returned here |
|
*/ |
|
void arm_cmplx_dot_prod_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
uint32_t numSamples, |
|
q63_t * realResult, |
|
q63_t * imagResult); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex dot product |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
* @param[out] realResult real part of the result returned here |
|
* @param[out] imagResult imaginary part of the result returned here |
|
*/ |
|
void arm_cmplx_dot_prod_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
uint32_t numSamples, |
|
float32_t * realResult, |
|
float32_t * imagResult); |
|
|
|
|
|
/** |
|
* @brief Q15 complex-by-real multiplication |
|
* @param[in] pSrcCmplx points to the complex input vector |
|
* @param[in] pSrcReal points to the real input vector |
|
* @param[out] pCmplxDst points to the complex output vector |
|
* @param[in] numSamples number of samples in each vector |
|
*/ |
|
void arm_cmplx_mult_real_q15( |
|
q15_t * pSrcCmplx, |
|
q15_t * pSrcReal, |
|
q15_t * pCmplxDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q31 complex-by-real multiplication |
|
* @param[in] pSrcCmplx points to the complex input vector |
|
* @param[in] pSrcReal points to the real input vector |
|
* @param[out] pCmplxDst points to the complex output vector |
|
* @param[in] numSamples number of samples in each vector |
|
*/ |
|
void arm_cmplx_mult_real_q31( |
|
q31_t * pSrcCmplx, |
|
q31_t * pSrcReal, |
|
q31_t * pCmplxDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex-by-real multiplication |
|
* @param[in] pSrcCmplx points to the complex input vector |
|
* @param[in] pSrcReal points to the real input vector |
|
* @param[out] pCmplxDst points to the complex output vector |
|
* @param[in] numSamples number of samples in each vector |
|
*/ |
|
void arm_cmplx_mult_real_f32( |
|
float32_t * pSrcCmplx, |
|
float32_t * pSrcReal, |
|
float32_t * pCmplxDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Minimum value of a Q7 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] result is output pointer |
|
* @param[in] index is the array index of the minimum value in the input buffer. |
|
*/ |
|
void arm_min_q7( |
|
q7_t * pSrc, |
|
uint32_t blockSize, |
|
q7_t * result, |
|
uint32_t * index); |
|
|
|
|
|
/** |
|
* @brief Minimum value of a Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output pointer |
|
* @param[in] pIndex is the array index of the minimum value in the input buffer. |
|
*/ |
|
void arm_min_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Minimum value of a Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output pointer |
|
* @param[out] pIndex is the array index of the minimum value in the input buffer. |
|
*/ |
|
void arm_min_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Minimum value of a floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[in] blockSize is the number of samples to process |
|
* @param[out] pResult is output pointer |
|
* @param[out] pIndex is the array index of the minimum value in the input buffer. |
|
*/ |
|
void arm_min_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Maximum value of a Q7 vector. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[in] blockSize length of the input vector |
|
* @param[out] pResult maximum value returned here |
|
* @param[out] pIndex index of maximum value returned here |
|
*/ |
|
void arm_max_q7( |
|
q7_t * pSrc, |
|
uint32_t blockSize, |
|
q7_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Maximum value of a Q15 vector. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[in] blockSize length of the input vector |
|
* @param[out] pResult maximum value returned here |
|
* @param[out] pIndex index of maximum value returned here |
|
*/ |
|
void arm_max_q15( |
|
q15_t * pSrc, |
|
uint32_t blockSize, |
|
q15_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Maximum value of a Q31 vector. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[in] blockSize length of the input vector |
|
* @param[out] pResult maximum value returned here |
|
* @param[out] pIndex index of maximum value returned here |
|
*/ |
|
void arm_max_q31( |
|
q31_t * pSrc, |
|
uint32_t blockSize, |
|
q31_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Maximum value of a floating-point vector. |
|
* @param[in] pSrc points to the input buffer |
|
* @param[in] blockSize length of the input vector |
|
* @param[out] pResult maximum value returned here |
|
* @param[out] pIndex index of maximum value returned here |
|
*/ |
|
void arm_max_f32( |
|
float32_t * pSrc, |
|
uint32_t blockSize, |
|
float32_t * pResult, |
|
uint32_t * pIndex); |
|
|
|
|
|
/** |
|
* @brief Q15 complex-by-complex multiplication |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_mult_cmplx_q15( |
|
q15_t * pSrcA, |
|
q15_t * pSrcB, |
|
q15_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Q31 complex-by-complex multiplication |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_mult_cmplx_q31( |
|
q31_t * pSrcA, |
|
q31_t * pSrcB, |
|
q31_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Floating-point complex-by-complex multiplication |
|
* @param[in] pSrcA points to the first input vector |
|
* @param[in] pSrcB points to the second input vector |
|
* @param[out] pDst points to the output vector |
|
* @param[in] numSamples number of complex samples in each vector |
|
*/ |
|
void arm_cmplx_mult_cmplx_f32( |
|
float32_t * pSrcA, |
|
float32_t * pSrcB, |
|
float32_t * pDst, |
|
uint32_t numSamples); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the floating-point vector to Q31 vector. |
|
* @param[in] pSrc points to the floating-point input vector |
|
* @param[out] pDst points to the Q31 output vector |
|
* @param[in] blockSize length of the input vector |
|
*/ |
|
void arm_float_to_q31( |
|
float32_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the floating-point vector to Q15 vector. |
|
* @param[in] pSrc points to the floating-point input vector |
|
* @param[out] pDst points to the Q15 output vector |
|
* @param[in] blockSize length of the input vector |
|
*/ |
|
void arm_float_to_q15( |
|
float32_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the floating-point vector to Q7 vector. |
|
* @param[in] pSrc points to the floating-point input vector |
|
* @param[out] pDst points to the Q7 output vector |
|
* @param[in] blockSize length of the input vector |
|
*/ |
|
void arm_float_to_q7( |
|
float32_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q31 vector to Q15 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q31_to_q15( |
|
q31_t * pSrc, |
|
q15_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q31 vector to Q7 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q31_to_q7( |
|
q31_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q15 vector to floating-point vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q15_to_float( |
|
q15_t * pSrc, |
|
float32_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q15 vector to Q31 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q15_to_q31( |
|
q15_t * pSrc, |
|
q31_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @brief Converts the elements of the Q15 vector to Q7 vector. |
|
* @param[in] pSrc is input pointer |
|
* @param[out] pDst is output pointer |
|
* @param[in] blockSize is the number of samples to process |
|
*/ |
|
void arm_q15_to_q7( |
|
q15_t * pSrc, |
|
q7_t * pDst, |
|
uint32_t blockSize); |
|
|
|
|
|
/** |
|
* @ingroup groupInterpolation |
|
*/ |
|
|
|
/** |
|
* @defgroup BilinearInterpolate Bilinear Interpolation |
|
* |
|
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
|
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
|
* determines values between the grid points. |
|
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
|
* Bilinear interpolation is often used in image processing to rescale images. |
|
* The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
|
* |
|
* <b>Algorithm</b> |
|
* \par |
|
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
|
* For floating-point, the instance structure is defined as: |
|
* <pre> |
|
* typedef struct |
|
* { |
|
* uint16_t numRows; |
|
* uint16_t numCols; |
|
* float32_t *pData; |
|
* } arm_bilinear_interp_instance_f32; |
|
* </pre> |
|
* |
|
* \par |
|
* where <code>numRows</code> specifies the number of rows in the table; |
|
* <code>numCols</code> specifies the number of columns in the table; |
|
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
|
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
|
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
|
* |
|
* \par |
|
* Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
|
* <pre> |
|
* XF = floor(x) |
|
* YF = floor(y) |
|
* </pre> |
|
* \par |
|
* The interpolated output point is computed as: |
|
* <pre> |
|
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
|
* + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
|
* + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
|
* + f(XF+1, YF+1) * (x-XF)*(y-YF) |
|
* </pre> |
|
* Note that the coordinates (x, y) contain integer and fractional components. |
|
* The integer components specify which portion of the table to use while the |
|
* fractional components control the interpolation processor. |
|
* |
|
* \par |
|
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
|
*/ |
|
|
|
/** |
|
* @addtogroup BilinearInterpolate |
|
* @{ |
|
*/ |
|
|
|
|
|
/** |
|
* |
|
* @brief Floating-point bilinear interpolation. |
|
* @param[in,out] S points to an instance of the interpolation structure. |
|
* @param[in] X interpolation coordinate. |
|
* @param[in] Y interpolation coordinate. |
|
* @return out interpolated value. |
|
*/ |
|
static __INLINE float32_t arm_bilinear_interp_f32( |
|
const arm_bilinear_interp_instance_f32 * S, |
|
float32_t X, |
|
float32_t Y) |
|
{ |
|
float32_t out; |
|
float32_t f00, f01, f10, f11; |
|
float32_t *pData = S->pData; |
|
int32_t xIndex, yIndex, index; |
|
float32_t xdiff, ydiff; |
|
float32_t b1, b2, b3, b4; |
|
|
|
xIndex = (int32_t) X; |
|
yIndex = (int32_t) Y; |
|
|
|
/* Care taken for table outside boundary */ |
|
/* Returns zero output when values are outside table boundary */ |
|
if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) |
|
{ |
|
return (0); |
|
} |
|
|
|
/* Calculation of index for two nearest points in X-direction */ |
|
index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
|
|
|
|
|
/* Read two nearest points in X-direction */ |
|
f00 = pData[index]; |
|
f01 = pData[index + 1]; |
|
|
|
/* Calculation of index for two nearest points in Y-direction */ |
|
index = (xIndex - 1) + (yIndex) * S->numCols; |
|
|
|
|
|
/* Read two nearest points in Y-direction */ |
|
f10 = pData[index]; |
|
f11 = pData[index + 1]; |
|
|
|
/* Calculation of intermediate values */ |
|
b1 = f00; |
|
b2 = f01 - f00; |
|
b3 = f10 - f00; |
|
b4 = f00 - f01 - f10 + f11; |
|
|
|
/* Calculation of fractional part in X */ |
|
xdiff = X - xIndex; |
|
|
|
/* Calculation of fractional part in Y */ |
|
ydiff = Y - yIndex; |
|
|
|
/* Calculation of bi-linear interpolated output */ |
|
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
|
|
|
/* return to application */ |
|
return (out); |
|
} |
|
|
|
|
|
/** |
|
* |
|
* @brief Q31 bilinear interpolation. |
|
* @param[in,out] S points to an instance of the interpolation structure. |
|
* @param[in] X interpolation coordinate in 12.20 format. |
|
* @param[in] Y interpolation coordinate in 12.20 format. |
|
* @return out interpolated value. |
|
*/ |
|
static __INLINE q31_t arm_bilinear_interp_q31( |
|
arm_bilinear_interp_instance_q31 * S, |
|
q31_t X, |
|
q31_t Y) |
|
{ |
|
q31_t out; /* Temporary output */ |
|
q31_t acc = 0; /* output */ |
|
q31_t xfract, yfract; /* X, Y fractional parts */ |
|
q31_t x1, x2, y1, y2; /* Nearest output values */ |
|
int32_t rI, cI; /* Row and column indices */ |
|
q31_t *pYData = S->pData; /* pointer to output table values */ |
|
uint32_t nCols = S->numCols; /* num of rows */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
rI = ((X & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
cI = ((Y & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Care taken for table outside boundary */ |
|
/* Returns zero output when values are outside table boundary */ |
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
|
{ |
|
return (0); |
|
} |
|
|
|
/* 20 bits for the fractional part */ |
|
/* shift left xfract by 11 to keep 1.31 format */ |
|
xfract = (X & 0x000FFFFF) << 11u; |
|
|
|
/* Read two nearest output values from the index */ |
|
x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; |
|
x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; |
|
|
|
/* 20 bits for the fractional part */ |
|
/* shift left yfract by 11 to keep 1.31 format */ |
|
yfract = (Y & 0x000FFFFF) << 11u; |
|
|
|
/* Read two nearest output values from the index */ |
|
y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; |
|
y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; |
|
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
|
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
|
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
|
|
|
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
|
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
|
acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
|
|
|
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
|
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
|
acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
|
|
|
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
|
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
|
acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
|
|
|
/* Convert acc to 1.31(q31) format */ |
|
return ((q31_t)(acc << 2)); |
|
} |
|
|
|
|
|
/** |
|
* @brief Q15 bilinear interpolation. |
|
* @param[in,out] S points to an instance of the interpolation structure. |
|
* @param[in] X interpolation coordinate in 12.20 format. |
|
* @param[in] Y interpolation coordinate in 12.20 format. |
|
* @return out interpolated value. |
|
*/ |
|
static __INLINE q15_t arm_bilinear_interp_q15( |
|
arm_bilinear_interp_instance_q15 * S, |
|
q31_t X, |
|
q31_t Y) |
|
{ |
|
q63_t acc = 0; /* output */ |
|
q31_t out; /* Temporary output */ |
|
q15_t x1, x2, y1, y2; /* Nearest output values */ |
|
q31_t xfract, yfract; /* X, Y fractional parts */ |
|
int32_t rI, cI; /* Row and column indices */ |
|
q15_t *pYData = S->pData; /* pointer to output table values */ |
|
uint32_t nCols = S->numCols; /* num of rows */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
rI = ((X & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
cI = ((Y & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Care taken for table outside boundary */ |
|
/* Returns zero output when values are outside table boundary */ |
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
|
{ |
|
return (0); |
|
} |
|
|
|
/* 20 bits for the fractional part */ |
|
/* xfract should be in 12.20 format */ |
|
xfract = (X & 0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index */ |
|
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
|
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
|
|
|
/* 20 bits for the fractional part */ |
|
/* yfract should be in 12.20 format */ |
|
yfract = (Y & 0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index */ |
|
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
|
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
|
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
|
|
|
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
|
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
|
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); |
|
acc = ((q63_t) out * (0xFFFFF - yfract)); |
|
|
|
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
|
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); |
|
acc += ((q63_t) out * (xfract)); |
|
|
|
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
|
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); |
|
acc += ((q63_t) out * (yfract)); |
|
|
|
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
|
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); |
|
acc += ((q63_t) out * (yfract)); |
|
|
|
/* acc is in 13.51 format and down shift acc by 36 times */ |
|
/* Convert out to 1.15 format */ |
|
return ((q15_t)(acc >> 36)); |
|
} |
|
|
|
|
|
/** |
|
* @brief Q7 bilinear interpolation. |
|
* @param[in,out] S points to an instance of the interpolation structure. |
|
* @param[in] X interpolation coordinate in 12.20 format. |
|
* @param[in] Y interpolation coordinate in 12.20 format. |
|
* @return out interpolated value. |
|
*/ |
|
static __INLINE q7_t arm_bilinear_interp_q7( |
|
arm_bilinear_interp_instance_q7 * S, |
|
q31_t X, |
|
q31_t Y) |
|
{ |
|
q63_t acc = 0; /* output */ |
|
q31_t out; /* Temporary output */ |
|
q31_t xfract, yfract; /* X, Y fractional parts */ |
|
q7_t x1, x2, y1, y2; /* Nearest output values */ |
|
int32_t rI, cI; /* Row and column indices */ |
|
q7_t *pYData = S->pData; /* pointer to output table values */ |
|
uint32_t nCols = S->numCols; /* num of rows */ |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
rI = ((X & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Input is in 12.20 format */ |
|
/* 12 bits for the table index */ |
|
/* Index value calculation */ |
|
cI = ((Y & (q31_t)0xFFF00000) >> 20); |
|
|
|
/* Care taken for table outside boundary */ |
|
/* Returns zero output when values are outside table boundary */ |
|
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
|
{ |
|
return (0); |
|
} |
|
|
|
/* 20 bits for the fractional part */ |
|
/* xfract should be in 12.20 format */ |
|
xfract = (X & (q31_t)0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index */ |
|
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
|
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
|
|
|
/* 20 bits for the fractional part */ |
|
/* yfract should be in 12.20 format */ |
|
yfract = (Y & (q31_t)0x000FFFFF); |
|
|
|
/* Read two nearest output values from the index */ |
|
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
|
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
|
|
|
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
|
out = ((x1 * (0xFFFFF - xfract))); |
|
acc = (((q63_t) out * (0xFFFFF - yfract))); |
|
|
|
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
|
out = ((x2 * (0xFFFFF - yfract))); |
|
acc += (((q63_t) out * (xfract))); |
|
|
|
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
|
out = ((y1 * (0xFFFFF - xfract))); |
|
acc += (((q63_t) out * (yfract))); |
|
|
|
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
|
out = ((y2 * (yfract))); |
|
acc += (((q63_t) out * (xfract))); |
|
|
|
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
|
return ((q7_t)(acc >> 40)); |
|
} |
|
|
|
/** |
|
* @} end of BilinearInterpolate group |
|
*/ |
|
|
|
|
|
/* SMMLAR */ |
|
#define multAcc_32x32_keep32_R(a, x, y) \ |
|
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
|
|
|
/* SMMLSR */ |
|
#define multSub_32x32_keep32_R(a, x, y) \ |
|
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
|
|
|
/* SMMULR */ |
|
#define mult_32x32_keep32_R(a, x, y) \ |
|
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
|
|
|
/* SMMLA */ |
|
#define multAcc_32x32_keep32(a, x, y) \ |
|
a += (q31_t) (((q63_t) x * y) >> 32) |
|
|
|
/* SMMLS */ |
|
#define multSub_32x32_keep32(a, x, y) \ |
|
a -= (q31_t) (((q63_t) x * y) >> 32) |
|
|
|
/* SMMUL */ |
|
#define mult_32x32_keep32(a, x, y) \ |
|
a = (q31_t) (((q63_t) x * y ) >> 32) |
|
|
|
|
|
#if defined ( __CC_ARM ) |
|
/* Enter low optimization region - place directly above function definition */ |
|
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
|
#define LOW_OPTIMIZATION_ENTER \ |
|
_Pragma ("push") \ |
|
_Pragma ("O1") |
|
#else |
|
#define LOW_OPTIMIZATION_ENTER |
|
#endif |
|
|
|
/* Exit low optimization region - place directly after end of function definition */ |
|
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
|
#define LOW_OPTIMIZATION_EXIT \ |
|
_Pragma ("pop") |
|
#else |
|
#define LOW_OPTIMIZATION_EXIT |
|
#endif |
|
|
|
/* Enter low optimization region - place directly above function definition */ |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
|
|
/* Exit low optimization region - place directly after end of function definition */ |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
|
#define LOW_OPTIMIZATION_ENTER |
|
#define LOW_OPTIMIZATION_EXIT |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#elif defined(__GNUC__) |
|
#define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) |
|
#define LOW_OPTIMIZATION_EXIT |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#elif defined(__ICCARM__) |
|
/* Enter low optimization region - place directly above function definition */ |
|
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
|
#define LOW_OPTIMIZATION_ENTER \ |
|
_Pragma ("optimize=low") |
|
#else |
|
#define LOW_OPTIMIZATION_ENTER |
|
#endif |
|
|
|
/* Exit low optimization region - place directly after end of function definition */ |
|
#define LOW_OPTIMIZATION_EXIT |
|
|
|
/* Enter low optimization region - place directly above function definition */ |
|
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
|
_Pragma ("optimize=low") |
|
#else |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
#endif |
|
|
|
/* Exit low optimization region - place directly after end of function definition */ |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#elif defined(__CSMC__) |
|
#define LOW_OPTIMIZATION_ENTER |
|
#define LOW_OPTIMIZATION_EXIT |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#elif defined(__TASKING__) |
|
#define LOW_OPTIMIZATION_ENTER |
|
#define LOW_OPTIMIZATION_EXIT |
|
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
|
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
|
|
|
#endif |
|
|
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
|
|
#if defined ( __GNUC__ ) |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
#endif /* _ARM_MATH_H */ |
|
|
|
/** |
|
* |
|
* End of file. |
|
*/
|
|
|