You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

576 lines
15 KiB

/*
tim_scope for DC motor
Example for the STM32L031 Eval Board with 128x64 OLED at PA13/PA14
Single Mosfet Shield
MOSFET: PA1 / AF2: TIM2_CH2
VarRes: PA5 / ADC CH5
Voltage sense: PA6 / ADC CH6
*/
#include <stdio.h>
#include "stm32l031xx.h"
#include "delay.h"
#include "u8g2.h"
/*=======================================================================*/
/* external functions */
uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
/*=======================================================================*/
/* global variables */
u8g2_t u8g2; // u8g2 object
uint8_t u8g2_x, u8g2_y; // current position on the screen
volatile unsigned long SysTickCount = 0;
/*=======================================================================*/
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
SysTickCount++;
}
void setHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
SystemCoreClockUpdate(); /* Update SystemCoreClock global variable */
}
/*
Enable several power regions: PWR, GPIOA
This must be executed after each reset.
*/
void startUp(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface (PWR) */
PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */
SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
}
/*=======================================================================*/
/* u8x8 display procedures */
void initDisplay(void)
{
/* setup display */
u8g2_Setup_ssd1306_i2c_128x64_noname_f(&u8g2, U8G2_R0, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0);
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
u8g2_SetFont(&u8g2, u8g2_font_6x12_tf);
u8g2_ClearBuffer(&u8g2);
u8g2_DrawStr(&u8g2, 0,12, "STM32L031");
u8g2_DrawStr(&u8g2, 0,24, u8x8_u8toa(SystemCoreClock/1000000, 2));
u8g2_DrawStr(&u8g2, 20,24, "MHz");
u8g2_SendBuffer(&u8g2);
u8g2_x = 0;
u8g2_y = 0;
}
void outChar(uint8_t c)
{
u8g2_x+=u8g2_DrawGlyph(&u8g2, u8g2_x, u8g2_y, c);
}
void outStr(const char *s)
{
while( *s )
outChar(*s++);
}
void outHexHalfByte(uint8_t b)
{
b &= 0x0f;
if ( b < 10 )
outChar(b+'0');
else
outChar(b+'a'-10);
}
void outHex8(uint8_t b)
{
outHexHalfByte(b >> 4);
outHexHalfByte(b);
}
void outHex16(uint16_t v)
{
outHex8(v>>8);
outHex8(v);
}
void outHex32(uint32_t v)
{
outHex16(v>>16);
outHex16(v);
}
void setRow(uint8_t r)
{
u8g2_x = 0;
u8g2_y = r;
}
/*=======================================================================*/
/* STOP ANY ADC CONVERSION */
void stopADC(void)
{
ADC1->CR |= ADC_CR_ADSTP;
while(ADC1->CR & ADC_CR_ADSTP)
;
}
/* CONFIGURATION with ADEN=0 */
/* required to change the configuration of the ADC */
void disableADC(void)
{
/* Check for the ADEN flag. */
/* Setting ADDIS will fail if the ADC is alread disabled: The while loop will not terminate */
if ((ADC1->CR & ADC_CR_ADEN) != 0)
{
/* is this correct? i think we must use the disable flag here */
ADC1->CR |= ADC_CR_ADDIS;
while(ADC1->CR & ADC_CR_ADDIS)
;
}
}
/* ENABLE ADC (but do not start) */
/* after the ADC is enabled, it must not be reconfigured */
void enableADC(void)
{
ADC1->ISR |= ADC_ISR_ADRDY; /* clear ready flag */
ADC1->CR |= ADC_CR_ADEN; /* enable ADC */
while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* wait for ADC */
{
}
}
void initADC(void)
{
//__disable_irq();
/* ADC Clock Enable */
RCC->APB2ENR |= RCC_APB2ENR_ADCEN; /* enable ADC clock */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* ADC Reset */
RCC->APB2RSTR |= RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
RCC->APB2RSTR &= ~RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* ADC Basic Setup */
ADC1->IER = 0; /* do not allow any interrupts */
ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* select HSI16 clock */
ADC1->CFGR1 = ADC_CFGR1_RES_1; /* 8 bit resolution */
ADC1->CR |= ADC_CR_ADVREGEN; /* enable ADC voltage regulator, probably not required, because this is automatically activated */
ADC->CCR |= ADC_CCR_VREFEN; /* Wake-up the VREFINT */
ADC->CCR |= ADC_CCR_TSEN; /* Wake-up the temperature sensor */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* CALIBRATION */
if ((ADC1->CR & ADC_CR_ADEN) != 0) /* clear ADEN flag if required */
{
/* is this correct? i think we must use the disable flag here */
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN);
}
ADC1->CR |= ADC_CR_ADCAL; /* start calibration */
while ((ADC1->ISR & ADC_ISR_EOCAL) == 0) /* wait for clibration finished */
{
}
ADC1->ISR |= ADC_ISR_EOCAL; /* clear the status flag, by writing 1 to it */
__NOP(); /* not sure why, but some nop's are required here, at least 4 of them */
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
/* CONFIGURATION with ADEN=0 */
disableADC();
//ADC1->CFGR1 &= ~ADC_CFGR1_RES; /* 12 bit resolution */
ADC1->CFGR1 = ADC_CFGR1_RES_1; /* 8 bit resolution */
enableADC();
}
/*
ch0 PA0 pin 6
ch1 PA1 pin 7
ch2 PA2 pin 8
ch3 PA3 pin 9
ch4 PA4 pin 10
ch5 PA5 pin 11
ch6 PA6 pin 12
ch7 PA7 pin 13
ch8 PB0 -
ch9 PB1 pin 14
ch 0..15: GPIO
ch 16: ???
ch 17: vref (bandgap)
ch18: temperature sensor
returns 12 bit result, right aligned
*/
uint16_t getADC(uint8_t ch)
{
//uint32_t i;
stopADC();
disableADC();
/* CONFIGURE ADC */
//ADC1->CFGR1 &= ~ADC_CFGR1_EXTEN; /* software enabled conversion start */
//ADC1->CFGR1 &= ~ADC_CFGR1_ALIGN; /* right alignment */
ADC1->CFGR1 = ADC_CFGR1_RES_1; /* 8 bit resolution */
//ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* Select a sampling mode of 111 (very slow)*/
ADC1->SMPR = 0;
enableADC();
ADC1->CHSELR = 1<<ch; /* Select channel (can be done also if ADC is enabled) */
/* DO CONVERSION */
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
while ((ADC1->ISR & ADC_ISR_EOC) == 0) /* wait end of conversion */
{
}
return ADC1->DR;
}
void scanADC(uint8_t ch, uint16_t cnt, uint8_t *buf)
{
stopADC();
disableADC();
RCC->AHBENR |= RCC_AHBENR_DMAEN; /* enable DMA clock */
__NOP(); __NOP(); /* extra delay for clock stabilization required? */
/* disable and reset to defaults */
DMA1_Channel1->CCR = 0;
/* defaults:
- 8 Bit access --> ok
- read from peripheral --> ok
- none-circular mode --> ok
- no increment mode --> will be changed below
*/
DMA1_Channel1->CNDTR = cnt; /* buffer size */
DMA1_Channel1->CPAR = (uint32_t)&(ADC1->DR); /* source value */
DMA1_Channel1->CMAR = (uint32_t)buf; /* destination memory */
DMA1_CSELR->CSELR &= ~DMA_CSELR_C1S; /* 0000: select ADC for DMA CH 1 (this is reset default) */
DMA1_Channel1->CCR |= DMA_CCR_MINC; /* increment memory */
DMA1_Channel1->CCR |= DMA_CCR_EN; /* enable */
/*
detect rising edge on external trigger (ADC_CFGR1_EXTEN_0)
recive trigger from TIM2 (ADC_CFGR1_EXTSEL_1)
8 Bit resolution (ADC_CFGR1_RES_1)
Use DMA one shot mode and enable DMA (ADC_CFGR1_DMAEN)
Once DMA is finished, it will disable continues mode (ADC_CFGR1_CONT)
*/
ADC1->CFGR1 = ADC_CFGR1_EXTEN_0 /* rising edge */
| ADC_CFGR1_EXTSEL_1 /* TIM2 */
| ADC_CFGR1_RES_1 /* 8 Bit resolution */
| ADC_CFGR1_CONT /* continues mode */
| ADC_CFGR1_DMAEN; /* enable generation of DMA requests */
//ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2;
//ADC1->SMPR = ADC_SMPR_SMP_1 ;
ADC1->SMPR = ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 ;
/*
12.5 + 8.5 = 21 ADC Cycles pre ADC sampling
4 MHz / 21 cycle / 256 = 744 Hz
*/
enableADC();
/* conversion will be started automatically with rising edge of TIM2, yet ADSTART is still required */
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
/* wait until DMA is completed */
while ( DMA1_Channel1->CNDTR > 0 )
;
}
/*
special values:
-1 Can not find level
255 no rotation
0..254 BMEF level, speed is k*(255-getBEMFLevel())
*/
int getBEMFLevel(uint16_t cnt, uint8_t *buf, uint16_t start)
{
return -1;
}
/*=======================================================================*/
void initTIM(uint16_t tim_cycle)
{
/* enable clock for TIM2 */
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
/*enable clock for GPIOA */
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP(); /* extra delay for clock stabilization required? */
__NOP();
/* prescalar for AHB and APB1 */
/* reselt defaults for HPRE and PPRE1: no clock division */
// RCC->CFGR &= ~RCC_CFGR_HPRE;
// RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
// RCC->CFGR &= ~RCC_CFGR_PPRE1;
// RCC->CFGR |= RCC_CFGR_PPRE1_DIV1;
/* configure GPIOA PA1 for TIM2 */
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PA9 */
GPIOA->MODER |= GPIO_MODER_MODE1_1; /* alt fn */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* push-pull */
GPIOA->AFR[0] &= ~(15<<4); /* Clear Alternate Function PA1 */
GPIOA->AFR[0] |= 2<<4; /* AF2 Alternate Function PA1 */
/* TIM2 configure */
/* disable all interrupts */
//TIM2->DIER = 0; /* 0 is reset default value */
/* clear everything, including the "Update disable" flag, so that updates */
/* are generated */
// TIM2->CR1 = 0; /* 0 is reset default value */
//TIM2->CR1 |= TIM_CR1_ARPE; // ARR is not modified so constant update is ok
/* Update request by manual UG bit setting or slave controller */
/* both is not required here */
/* so, update request by couter over/underflow remains */
//TIM2->CR1 |= TIM_CR1_URS; /* only udf/ovf generae events */
TIM2->CR2 |= TIM_CR2_MMS_1; /* Update event for TRGO */
TIM2->ARR = 5355; /* total cycle count */
TIM2->CCR2 = 1024; /* duty cycle */
//TIM2->CCMR1 &= ~TIM_CCMR1_OC2CE; /* disable clear output compare 2 **/
TIM2->CCMR1 |= TIM_CCMR1_OC2M; /* all 3 bits set: PWM Mode 2 */
//TIM2->CCMR1 &= ~TIM_CCMR1_OC1M_0; /* 110: PWM Mode 1 */
TIM2->CCMR1 |= TIM_CCMR1_OC2PE; /* preload enable CCR2 is preloaded*/
// TIM2->CCMR1 &= ~TIM_CCMR1_OC2FE; /* fast disable (reset default) */
// TIM2->CCMR1 &= ~TIM_CCMR1_CC2S; /* configure cc2 as output (this is reset default) */
//TIM2->EGR |= TIM_EGR_CC2G; /* capture event cc2 */
TIM2->CCER |= TIM_CCER_CC2E; /* set output enable */
//TIM2->CCER |= TIM_CCER_CC2P; /* polarity 0: normal (reset default) / 1: inverted*/
TIM2->PSC = 7; /* divide by 8 */
TIM2->CR1 |= TIM_CR1_CEN; /* counter enable */
/*
TIM2 cycle:
32000000Hz / 5355 / 8 = 747 Hz
*/
}
/*=======================================================================*/
#define BUF_MUL 2
#define TIM_CYCLE_TIME 5355
#define TIM_CYCLE_UPPER_SKIP 100
#define TIM_CYCLE_LOWER_SKIP 400
uint8_t adc_buf[128*BUF_MUL];
void main()
{
uint16_t adc_value;
uint16_t tim_duty;
uint16_t zero_pos;
uint16_t i;
u8g2_uint_t y, yy;
setHSIClock(); /* enable 32 MHz Clock */
startUp(); /* enable systick irq and several power regions */
initDisplay(); /* aktivate display */
initADC();
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP();
__NOP();
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PA1 */
GPIOA->MODER |= GPIO_MODER_MODE1_0; /* Output mode for PA1 */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* no Push/Pull for PA1 */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED1; /* low speed for PA1 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD1; /* no pullup/pulldown for PA1 */
GPIOA->BSRR = GPIO_BSRR_BS_1; /* atomic set PA1 */
initTIM(TIM_CYCLE_TIME);
for(;;)
{
u8g2_ClearBuffer(&u8g2);
adc_value = getADC(5);
tim_duty = ((uint32_t)adc_value*((uint32_t)TIM_CYCLE_TIME-TIM_CYCLE_UPPER_SKIP-TIM_CYCLE_LOWER_SKIP))>>8;
tim_duty += TIM_CYCLE_LOWER_SKIP;
TIM2->CCR2 = tim_duty;
TIM2->SR &= ~TIM_SR_UIF;
while( (TIM2->SR & TIM_SR_UIF) == 0 )
;
yy = 30;
for( i = 0; i < 128; i++ )
{
y = 30-(getADC(6)>>3);
u8g2_DrawPixel(&u8g2, i, y);
if ( y < yy )
u8g2_DrawVLine(&u8g2, i, y, yy-y+1);
else
u8g2_DrawVLine(&u8g2, i, yy, y-yy+1);
yy = y;
}
for( i = 0; i < 128*BUF_MUL; i++ )
adc_buf[i] = i;
scanADC(6, 128*BUF_MUL, adc_buf);
yy = 60;
zero_pos = ((uint32_t)tim_duty * (uint32_t)256) / (uint32_t)TIM_CYCLE_TIME;
zero_pos +=4;
zero_pos += (256-zero_pos)>>6;
setRow(10); outHex16(adc_value);
outStr(" "); outHex8(adc_buf[0]); outStr(" "); outHex8(adc_buf[1]); outStr(" "); outHex8(adc_buf[2]);
outStr("|"); outHex8(adc_buf[zero_pos/2]); outStr("|"); outHex8(adc_buf[zero_pos]);
u8g2_DrawVLine(&u8g2, zero_pos/2, yy-7, 15);
u8g2_DrawVLine(&u8g2, zero_pos/4, yy-7, 15);
for( i = 0; i < 128; i++ )
{
y = 60-(adc_buf[i*BUF_MUL]>>3);
u8g2_DrawPixel(&u8g2, i, y);
if ( y < yy )
u8g2_DrawVLine(&u8g2, i, y, yy-y+1);
else
u8g2_DrawVLine(&u8g2, i, yy, y-yy+1);
yy = y;
}
u8g2_SendBuffer(&u8g2);
}
}