You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

643 lines
15 KiB

/*
GPIO pulse generator project for the STM32L031
I2C:
Write 0, <gpio cmd>
*/
#include "stm32l031xx.h"
#include "core_cm0plus.h"
/*================================================*/
/* forward declaration */
void setGPIO( uint8_t n );
void clearGPIO(void);
/*================================================*/
/* queue */
#define GPIO_QUEUE_MAX 128
uint8_t gpio_queue_mem[GPIO_QUEUE_MAX];
uint8_t gpio_queue_start = 0;
uint8_t gpio_queue_end = 0;
/* this is called from the I2C interrupt procedures */
void addCmdToGPIOQueue(uint8_t n)
{
uint8_t pos;
pos = gpio_queue_end ;
pos++;
if ( pos >= GPIO_QUEUE_MAX )
pos = 0;
if ( pos == gpio_queue_start )
return; // queue overflow
gpio_queue_mem[gpio_queue_end] = n;
gpio_queue_end = pos;
}
uint8_t isGPIOQueueEmpty(void)
{
if ( gpio_queue_start == gpio_queue_end )
return 1;
return 0;
}
/* get the next command in the queue, return 255 if the queue is empty */
uint8_t getCmdFromGPIOQueue(void)
{
uint8_t r = gpio_queue_mem[gpio_queue_start];
if ( isGPIOQueueEmpty() )
return 255;
return r;
}
void removeCmdFromGPIOQueue(void)
{
if ( isGPIOQueueEmpty() )
return;
__disable_irq();
gpio_queue_start++;
if ( gpio_queue_start >= GPIO_QUEUE_MAX )
gpio_queue_start = 0;
__enable_irq();
}
/*================================================*/
/* GPIO output state machine */
#define GPIO_STATE_IDLE 0
#define GPIO_STATE_TURN_ON 1
#define GPIO_STATE_WAIT_ON 2
#define GPIO_STATE_OFF 3
/* time is in ticks + 1 */
#define GPIO_STATE_ON_TICKS 0
#define GPIO_STATE_OFF_TICKS 4
volatile uint8_t gpio_state = GPIO_STATE_IDLE;
volatile uint8_t gpio_state_machine_output_number = 0;
volatile uint8_t gpio_state_machine_counter = 0;
void gpioNextState(void)
{
switch(gpio_state)
{
case GPIO_STATE_IDLE:
break;
case GPIO_STATE_TURN_ON:
setGPIO(gpio_state_machine_output_number);
gpio_state_machine_counter = GPIO_STATE_ON_TICKS;
gpio_state = GPIO_STATE_WAIT_ON;
break;
case GPIO_STATE_WAIT_ON:
if ( gpio_state_machine_counter == 0 )
{
clearGPIO();
gpio_state_machine_counter = GPIO_STATE_OFF_TICKS;
gpio_state = GPIO_STATE_OFF;
}
else
{
gpio_state_machine_counter--;
}
break;
case GPIO_STATE_OFF:
if ( gpio_state_machine_counter == 0 )
{
gpio_state = GPIO_STATE_IDLE;
}
else
{
gpio_state_machine_counter--;
}
break;
default:
gpio_state = GPIO_STATE_IDLE;
break;
}
}
uint8_t gpioStartStateMachine(uint8_t gpio_number)
{
/* can we enable the state machine? */
if ( gpio_state != GPIO_STATE_IDLE )
return 0; /* not idle, can not start */
/* set the gpio number */
__disable_irq();
gpio_state_machine_output_number = gpio_number;
gpio_state = GPIO_STATE_TURN_ON;
__enable_irq();
return 1;
}
/*================================================*/
/* Queue & State Machine Connector */
void processQueue(void)
{
uint8_t cmd;
cmd = getCmdFromGPIOQueue();
if ( cmd < 255 )
{
/* try to start the state machine */
if ( gpioStartStateMachine(cmd) != 0 )
{
/* success, remove the cmd from the queue */
removeCmdFromGPIOQueue();
}
}
}
/*==============================================*/
/* I2C */
volatile unsigned char i2c_mem[256]; /* contains data, which read or written */
volatile unsigned char i2c_idx; /* the current index into i2c_mem */
volatile unsigned char i2c_is_write_idx; /* write state */
volatile uint16_t i2c_total_irq_cnt;
volatile uint16_t i2c_TXIS_cnt;
volatile uint16_t i2c_RXNE_cnt;
void i2c_mem_reset_write(void)
{
i2c_is_write_idx = 1;
}
void i2c_mem_init(void)
{
i2c_idx = 0;
i2c_mem_reset_write();
}
void i2c_mem_set_index(unsigned char value)
{
i2c_idx = value;
i2c_is_write_idx = 0;
}
void i2c_mem_write_via_index(unsigned char value)
{
if ( i2c_idx == 0 )
{
/* additionall put this byte into the queue */
addCmdToGPIOQueue(value);
}
i2c_mem[i2c_idx++] = value;
}
unsigned char i2c_mem_read(void)
{
i2c_mem_reset_write();
i2c_idx++;
return i2c_mem[i2c_idx];
}
void i2c_mem_write(unsigned char value)
{
if ( i2c_is_write_idx != 0 )
{
i2c_mem_set_index(value);
}
else
{
i2c_is_write_idx = 0;
i2c_mem_write_via_index(value);
}
}
/* address: I2C address multiplied by 2 */
/* Pins PA9 (SCL) and PA10 (SDA) */
void i2c_hw_init(unsigned char address)
{
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; /* Enable clock for I2C */
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP(); /* extra delay for clock stabilization required? */
__NOP();
/* configure io */
GPIOA->MODER &= ~GPIO_MODER_MODE9; /* clear mode for PA9 */
GPIOA->MODER |= GPIO_MODER_MODE9_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_9; /* open drain */
GPIOA->AFR[1] &= ~(15<<4); /* Clear Alternate Function PA9 */
GPIOA->AFR[1] |= 1<<4; /* I2C Alternate Function PA9 */
GPIOA->MODER &= ~GPIO_MODER_MODE10; /* clear mode for PA10 */
GPIOA->MODER |= GPIO_MODER_MODE10_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_10; /* open drain */
GPIOA->AFR[1] &= ~(15<<8); /* Clear Alternate Function PA10 */
GPIOA->AFR[1] |= 1<<8; /* I2C Alternate Function PA10 */
RCC->CCIPR &= ~RCC_CCIPR_I2C1SEL; /* write 00 to the I2C clk selection register */
RCC->CCIPR |= RCC_CCIPR_I2C1SEL_0; /* select system clock (01) */
/* I2C init flow chart: Clear PE bit */
I2C1->CR1 &= ~I2C_CR1_PE;
/* I2C init flow chart: Configure filter */
/* leave at defaults */
/* I2C init flow chart: Configure timing */
/*
standard mode 100kHz configuration
SYSCLK = I2CCLK = 32 MHz
PRESC = 6 bits 28..31
SCLL = 0x13 bits 0..7
SCLH = 0x0f bits 8..15
SDADEL = 0x02 bits 16..19
SCLDEL = 0x04 bits 20..23
*/
I2C1->TIMINGR = 0x60420f13;
/* I2C init flow chart: Configure NOSTRECH */
I2C1->CR1 |= I2C_CR1_NOSTRETCH;
/* I2C init flow chart: Enable I2C */
I2C1->CR1 |= I2C_CR1_PE;
/* disable OAR1 for reconfiguration */
I2C1->OAR1 &= ~I2C_OAR1_OA1EN;
I2C1->OAR1 = address;
I2C1->OAR1 |= I2C_OAR1_OA1EN;
/* enable interrupts */
I2C1->CR1 |= I2C_CR1_STOPIE;
I2C1->CR1 |= I2C_CR1_NACKIE;
//I2C1->CR1 |= I2C_CR1_ADDRIE;
I2C1->CR1 |= I2C_CR1_RXIE;
I2C1->CR1 |= I2C_CR1_TXIE;
/* load first value into TXDR register */
I2C1->TXDR = i2c_mem[i2c_idx];
/* enable IRQ in NVIC */
NVIC_SetPriority(I2C1_IRQn, 0);
NVIC_EnableIRQ(I2C1_IRQn);
}
void i2c_init(unsigned char address)
{
i2c_mem_init();
i2c_hw_init(address);
}
void __attribute__ ((interrupt, used)) I2C1_IRQHandler(void)
{
unsigned long isr = I2C1->ISR;
i2c_total_irq_cnt ++;
if ( isr & I2C_ISR_TXIS )
{
i2c_TXIS_cnt++;
I2C1->TXDR = i2c_mem_read();
}
else if ( isr & I2C_ISR_RXNE )
{
i2c_RXNE_cnt++;
i2c_mem_write(I2C1->RXDR);
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
}
else if ( isr & I2C_ISR_STOPF )
{
I2C1->ICR = I2C_ICR_STOPCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_NACKF )
{
I2C1->ICR = I2C_ICR_NACKCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_ADDR )
{
/* not required, the addr match interrupt is not enabled */
I2C1->ICR = I2C_ICR_ADDRCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
/* if at any time the addr match is set, clear the flag */
/* not sure, whether this is required */
if ( isr & I2C_ISR_ADDR )
{
I2C1->ICR = I2C_ICR_ADDRCF;
}
}
/*================================================*/
volatile unsigned long SysTickCount = 0;
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
SysTickCount++;
gpioNextState();
}
/*
Delay by the provided number of system ticks.
The delay must be smaller than the RELOAD value.
This delay has an imprecision of about +/- 20 system ticks.
*/
static void _delay_system_ticks_sub(uint32_t sys_ticks)
{
uint32_t start_val, end_val, curr_val;
uint32_t load;
start_val = SysTick->VAL;
start_val &= 0x0ffffffUL;
end_val = start_val;
if ( end_val < sys_ticks )
{
/* check, if the operation after this if clause would lead to a negative result */
/* if this would be the case, then add the reload value first */
load = SysTick->LOAD;
load &= 0x0ffffffUL;
end_val += load;
}
/* counter goes towards zero, so end_val is below start value */
end_val -= sys_ticks;
/* wait until interval is left */
if ( start_val >= end_val )
{
for(;;)
{
curr_val = SysTick->VAL;
curr_val &= 0x0ffffffUL;
if ( curr_val <= end_val )
break;
if ( curr_val > start_val )
break;
}
}
else
{
for(;;)
{
curr_val = SysTick->VAL;
curr_val &= 0x0ffffffUL;
if ( curr_val <= end_val && curr_val > start_val )
break;
}
}
}
/*
Delay by the provided number of system ticks.
Any values between 0 and 0x0ffffffff are allowed.
*/
void delay_system_ticks(uint32_t sys_ticks)
{
uint32_t load4;
load4 = SysTick->LOAD;
load4 &= 0x0ffffffUL;
load4 >>= 2;
while ( sys_ticks > load4 )
{
sys_ticks -= load4;
_delay_system_ticks_sub(load4);
}
_delay_system_ticks_sub(sys_ticks);
}
void setHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
}
void initGPIO(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP();
__NOP();
GPIOA->MODER &= ~GPIO_MODER_MODE14; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE14_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_14; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED14; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD14; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_14; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE13; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE13_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_13; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED13; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD13; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_13; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE7; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE7_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_7; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED7; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD7; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_7; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE6; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE6_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_6; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED6; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD6; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_6; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE5; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE5_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_5; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED5; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD5; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_5; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE4; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE4_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_4; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED4; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD4; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_4; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE1_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED1; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD1; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_1; /* atomic clr */
GPIOA->MODER &= ~GPIO_MODER_MODE0; /* clear mode */
GPIOA->MODER |= GPIO_MODER_MODE0_0; /* Output mode */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_0; /* no Push/Pull */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED0; /* low speed */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD0; /* no pullup/pulldown */
GPIOA->BSRR = GPIO_BSRR_BR_0; /* atomic clr */
}
void clearGPIO(void)
{
GPIOA->BSRR = GPIO_BSRR_BR_14
| GPIO_BSRR_BR_13
| GPIO_BSRR_BR_7
| GPIO_BSRR_BR_6
| GPIO_BSRR_BR_5
| GPIO_BSRR_BR_4
| GPIO_BSRR_BR_1
| GPIO_BSRR_BR_0;
}
/*
0: PA14
1: PA13
2: PA7
3: PA6
4: PA5
5: PA4
6: PA1
7: PA0
*/
void setGPIO( uint8_t n )
{
clearGPIO();
switch(n)
{
case 0: GPIOA->BSRR = GPIO_BSRR_BS_14; break;
case 1: GPIOA->BSRR = GPIO_BSRR_BS_13; break;
case 2: GPIOA->BSRR = GPIO_BSRR_BS_7; break;
case 3: GPIOA->BSRR = GPIO_BSRR_BS_6; break;
case 4: GPIOA->BSRR = GPIO_BSRR_BS_5; break;
case 5: GPIOA->BSRR = GPIO_BSRR_BS_4; break;
case 6: GPIOA->BSRR = GPIO_BSRR_BS_1; break;
case 7: GPIOA->BSRR = GPIO_BSRR_BS_0; break;
}
}
void setAllGPIO(void)
{
GPIOA->BSRR = GPIO_BSRR_BS_14
| GPIO_BSRR_BS_13
| GPIO_BSRR_BS_7
| GPIO_BSRR_BS_6
| GPIO_BSRR_BS_5
| GPIO_BSRR_BS_4
| GPIO_BSRR_BS_1
| GPIO_BSRR_BS_0;
}
int main()
{
uint8_t i;
initGPIO();
setHSIClock();
i2c_init(2*17);
SysTick->LOAD = 32000*100 - 1; // 100 ms
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
/*
for(;;)
{
delay_system_ticks(32000*200);
setGPIO(7);
delay_system_ticks(32000*200);
clearGPIO();
}
*/
for( i = 0; i < 8; i++ )
addCmdToGPIOQueue(i);
for(;;)
{
processQueue();
}
}