You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

417 lines
12 KiB

/*
Example for the STM32L031 Eval Board with 128x64 OLED at PA13/PA14
LED: PA1 / AF2: TIM2_CH2
VarRes: PA5 / ADC CH5
ch0 PA0 pin 6
ch1 PA1 pin 7
ch2 PA2 pin 8
ch3 PA3 pin 9
ch4 PA4 pin 10
ch5 PA5 pin 11
ch6 PA6 pin 12
ch7 PA7 pin 13
ch8 PB0 -
ch9 PB1 pin 14
ch 0..15: GPIO
ch 16: ???
ch 17: vref (bandgap)
ch18: temperature sensor
*/
#include <stdio.h>
#include "stm32l031xx.h"
#include "delay.h"
#include "u8x8.h"
/*=======================================================================*/
/* external functions */
uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
/*=======================================================================*/
/* global variables */
u8x8_t u8x8; // u8x8 object
uint8_t u8x8_x, u8x8_y; // current position on the screen
volatile unsigned long SysTickCount = 0;
/*=======================================================================*/
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
SysTickCount++;
}
/* return current system time in milliseconds */
unsigned long getUpTime(void)
{
unsigned long sys_tick_cycle = SysTick->LOAD+1;
unsigned long millis_per_sys_tick_irq;
/*
the simple approach
millis_per_sys_tick_irq = (sys_tick_cycle*1000UL)/SystemCoreClock;
may overflow for large values of SysTick->LOAD. Instead this is better because SystemCoreClock is always
very large:
millis_per_sys_tick_irq = sys_tick_cycle/(SystemCoreClock/1000);
*/
millis_per_sys_tick_irq = sys_tick_cycle/(SystemCoreClock/1000);
return millis_per_sys_tick_irq * SysTickCount;
}
void setHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
SystemCoreClockUpdate(); /* Update SystemCoreClock global variable */
}
/*
Enable several power regions: PWR, GPIOA
This must be executed after each reset.
*/
void startUp(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface (PWR) */
PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */
SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
}
/*=======================================================================*/
/* u8x8 display procedures */
void initDisplay(void)
{
u8x8_Setup(&u8x8, u8x8_d_ssd1306_128x64_noname, u8x8_cad_ssd13xx_i2c, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0);
u8x8_InitDisplay(&u8x8);
u8x8_ClearDisplay(&u8x8);
u8x8_SetPowerSave(&u8x8, 0);
u8x8_SetFont(&u8x8, u8x8_font_amstrad_cpc_extended_r);
u8x8_x = 0;
u8x8_y = 0;
}
void outChar(uint8_t c)
{
if ( u8x8_x >= u8x8_GetCols(&u8x8) )
{
u8x8_x = 0;
u8x8_y++;
}
u8x8_DrawGlyph(&u8x8, u8x8_x, u8x8_y, c);
u8x8_x++;
}
void outStr(const char *s)
{
while( *s )
outChar(*s++);
}
void outHexHalfByte(uint8_t b)
{
b &= 0x0f;
if ( b < 10 )
outChar(b+'0');
else
outChar(b+'a'-10);
}
void outHex8(uint8_t b)
{
outHexHalfByte(b >> 4);
outHexHalfByte(b);
}
void outHex16(uint16_t v)
{
outHex8(v>>8);
outHex8(v);
}
void outDec16(uint16_t v)
{
outStr(u8x8_u16toa(v, 5));
}
void outHex32(uint32_t v)
{
outHex16(v>>16);
outHex16(v);
}
void setRow(uint8_t r)
{
u8x8_x = 0;
u8x8_y = r;
}
/*=======================================================================*/
/*
ADC defaults:
- Clock source: ADCCLK (HSI16) (ADC_CFGR2)
- ADC clock prescaler: divide by 1 (ADC_CCR)
- software enabled start
- right alignment
- 12 Bit resolution
- No interrupts enabled
- 1.5 clock cycles sampling time (fastest)
Calibration:
better ignore ADC_ISR_EOCAL and use the ADC_CR_ADCAL flag only.
otherwise some extra NOPs are required after calibration
Time
(1.5 + 12.5) / 4 MHz = 3.5us --> 286KHz
x16 oversampling: 56us --> 17.9KHz
*/
void initADC(uint8_t ch)
{
/* ADC Clock Enable */
RCC->APB2ENR |= RCC_APB2ENR_ADCEN; /* enable ADC clock */
__NOP(); __NOP(); /* extra delay for clock stabilization required? */
/* ADC Reset */
RCC->APB2RSTR |= RCC_APB2RSTR_ADCRST;
__NOP(); __NOP(); /* let us wait for some time */
RCC->APB2RSTR &= ~RCC_APB2RSTR_ADCRST;
__NOP(); __NOP(); /* let us wait for some time */
/* CALIBRATION */
ADC1->CR |= ADC_CR_ADCAL; /* start calibration */
while ((ADC1->CR & ADC_CR_ADCAL) != 0) /* wait for clibration finished */
{
}
/* ENABLE ADC */
ADC1->ISR |= ADC_ISR_ADRDY; /* clear ready flag */
ADC1->CR |= ADC_CR_ADEN; /* enable ADC */
while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* wait for ADC */
{
}
/* CONFIGURE ADC */
ADC1->CFGR1 |= ADC_CFGR1_CONT; /* continues mode */
ADC1->CFGR2 |= ADC_CFGR2_OVSR_0; /* 011 oversampling ration x16 */
ADC1->CFGR2 |= ADC_CFGR2_OVSR_1;
ADC1->CFGR2 |= ADC_CFGR2_OVSS_2; /* shift 4 bits (because of x16 oversampling) */
ADC1->CFGR2 |= ADC_CFGR2_OVSE; /* enable oversampling */
ADC1->CHSELR = 1<<ch; /* Select channel */
//ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* Select a sampling mode of 111 (very slow)*/
/* START CONVERSION */
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
while ((ADC1->ISR & ADC_ISR_EOC) == 0) /* wait end of first conversion */
{
}
//data is available in ADC1->DR;
}
/*=======================================================================*/
void initTIM(void)
{
/* enable clock for TIM2 */
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
//RCC->CFGR |= RCC_CFGR_PPRE1_2;
//RCC->CFGR |= RCC_CFGR_PPRE1_1;
//RCC->CFGR |= RCC_CFGR_PPRE1_0;
/*cenable clock for GPIOA */
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP(); __NOP(); /* extra delay for clock stabilization required? */
/* configure GPIOA PA1 for TIM2 */
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PA1 */
GPIOA->MODER |= GPIO_MODER_MODE1_1; /* alt fn */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* push-pull */
GPIOA->AFR[0] &= ~(15<<4); /* Clear Alternate Function PA1 */
GPIOA->AFR[0] |= 2<<4; /* AF2 Alternate Function PA1 */
/* TIM2 configure */
/* disable all interrupts */
//TIM2->DIER = 0; /* 0 is reset default value */
/* clear everything, including the "Update disable" flag, so that updates */
/* are generated */
// TIM2->CR1 = 0; /* 0 is reset default value */
//TIM2->CR1 |= TIM_CR1_ARPE; // ARR is not modified so constant update is ok
/* Update request by manual UG bit setting or slave controller */
/* both is not required here */
/* so, update request by couter over/underflow remains */
//TIM2->CR1 |= TIM_CR1_URS; /* only udf/ovf generae events */
TIM2->ARR = 4096; /* total cycle count */
TIM2->CCR2 = 1024; /* duty cycle */
//TIM2->CCMR1 &= ~TIM_CCMR1_OC2CE; /* disable clear output compare 2 **/
TIM2->CCMR1 |= TIM_CCMR1_OC2M; /* all 3 bits set: PWM Mode 2 */
//TIM2->CCMR1 &= ~TIM_CCMR1_OC1M_0; /* 110: PWM Mode 1 */
TIM2->CCMR1 |= TIM_CCMR1_OC2PE; /* preload enable CCR2 is preloaded*/
// TIM2->CCMR1 &= ~TIM_CCMR1_OC2FE; /* fast disable (reset default) */
// TIM2->CCMR1 &= ~TIM_CCMR1_CC2S; /* configure cc2 as output (this is reset default) */
//TIM2->EGR |= TIM_EGR_CC2G; /* capture event cc2 */
TIM2->CCER |= TIM_CCER_CC2E; /* set output enable */
//TIM2->CCER |= TIM_CCER_CC2P; /* polarity 0: normal (reset default) / 1: inverted*/
TIM2->CR1 |= TIM_CR1_CEN; /* counter enable */
}
/*
copy from ADC1->DR to TIM2->CCR2
ADC DMA requests can be used with DMA Channel 1
*/
void initDMA()
{
RCC->AHBENR |= RCC_AHBENR_DMAEN; /* enable DMA clock */
__NOP(); __NOP(); /* extra delay for clock stabilization required? */
/* defaults:
- 8 Bit access
- read from peripheral
- none-circular mode
- no increment mode
*/
DMA1_Channel1->CCR |= DMA_CCR_MSIZE_0; /* 16 bit access */
DMA1_Channel1->CCR |= DMA_CCR_PSIZE_0; /* 16 bit access */
DMA1_Channel1->CCR |= DMA_CCR_CIRC; /* circular mode */
DMA1_Channel1->CNDTR = 1; /* one data, then repeat (circular mode) */
DMA1_Channel1->CPAR = (uint32_t)&(ADC1->DR); /* source value */
DMA1_Channel1->CMAR = (uint32_t)&(TIM2->CCR2); /* destination register */
DMA1_CSELR->CSELR &= ~DMA_CSELR_C1S; /* 0000: select ADC for DMA CH 1 (this is reset default) */
DMA1_Channel1->CCR |= DMA_CCR_EN; /* enable */
ADC1->CFGR1 |= ADC_CFGR1_DMACFG; /* never stop DMA requests */
ADC1->CFGR1 |= ADC_CFGR1_DMAEN; /* enable DMA requests for ADC */
}
/*=======================================================================*/
void main()
{
uint32_t start, diff;
setHSIClock(); /* enable 32 MHz Clock */
startUp(); /* enable systick irq and several power regions */
initDisplay(); /* aktivate display */
/* setup ADC controlled PWM */
initADC(5); /* read from channel 5 (pin 11) */
initTIM();
initDMA();
/* rest of the code just shows the current ADC value on the OLED */
setRow(0); outStr("ADC DMA TIM Test");
setRow(2); outStr("ch5 pin11: ");
setRow(5); outStr("cycle: ");
for(;;)
{
setRow(3); outHex16(ADC1->DR);
TIM2->SR &= ~TIM_SR_CC2IF; /* clear irq flag */
while ( (TIM2->SR & TIM_SR_CC2IF) == 0 )
;
start = SysTick->VAL;
TIM2->SR &= ~TIM_SR_CC2IF; /* clear irq flag */
while ( (TIM2->SR & TIM_SR_CC2IF) == 0 )
;
diff = start-SysTick->VAL;
setRow(6); outHex32(diff);
}
}