You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1425 lines
37 KiB

/*
drv8871 DC motor
Example for the STM32L031 Eval Board with 128x64 OLED at PA13/PA14
IN_A: PA1 / AF2: TIM2_CH2
IN_B: PB1 / AF?: TIM2_CH4
VarRes: PA5 / ADC CH5
Voltage sense: PA6 / ADC CH6
0.2ms IRQ: PA7 (TIM22_CH2) (optional)
IN_A IN_B OUT_A OUT_B
1 0 1 0
0 1 0 1
0 0 0 0
1 1 HiZ HiZ
state machine
*/
#include <stdio.h>
#include "stm32l031xx.h"
#include "delay.h"
#include "u8g2.h"
/*=======================================================================*/
/* external functions */
uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
/*=======================================================================*/
/* global variables */
u8g2_t u8g2; // u8g2 object
uint8_t u8g2_x, u8g2_y; // current position on the screen
volatile unsigned long SysTickCount = 0;
/*=======================================================================*/
/* I2C */
volatile unsigned char i2c_mem[256]; /* contains data, which read or written */
volatile unsigned char i2c_idx; /* the current index into i2c_mem */
volatile unsigned char i2c_is_write_idx; /* write state */
/*
i2c_mem[0] input: speed
i2c_mem[1] not used
i2c_mem[2] = adc_diff_noise_per_sample_raw & 255
i2c_mem[3] = adc_diff_noise_per_sample_raw>>8;
i2c_mem[4] = adc_diff_noise_per_sample_filt & 255
i2c_mem[5] = adc_diff_noise_per_sample_filt>>8;
i2c_mem[6] = adc_max_raw & 255;
i2c_mem[7] = adc_max_raw>>8;
i2c_mem[8] = adc_max_filt & 255;
i2c_mem[9] = adc_max_filt>>8;
*/
/*=======================================================================*/
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
SysTickCount++;
}
void setHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
SystemCoreClockUpdate(); /* Update SystemCoreClock global variable */
}
/*
Enable several power regions: PWR, GPIOA
This must be executed after each reset.
*/
void startUp(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface (PWR) */
PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */
SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
}
/*=======================================================================*/
/* u8x8 display procedures */
void initDisplay(void)
{
/* setup display */
u8g2_Setup_ssd1306_i2c_128x64_noname_f(&u8g2, U8G2_R2, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0);
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
u8g2_SetFont(&u8g2, u8g2_font_6x12_tf);
u8g2_ClearBuffer(&u8g2);
u8g2_DrawStr(&u8g2, 0,12, "STM32L031");
u8g2_DrawStr(&u8g2, 0,24, u8x8_u8toa(SystemCoreClock/1000000, 2));
u8g2_DrawStr(&u8g2, 20,24, "MHz");
u8g2_SendBuffer(&u8g2);
u8g2_x = 0;
u8g2_y = 0;
}
void outChar(uint8_t c)
{
u8g2_x+=u8g2_DrawGlyph(&u8g2, u8g2_x, u8g2_y, c);
}
void outStr(const char *s)
{
while( *s )
outChar(*s++);
}
void outHexHalfByte(uint8_t b)
{
b &= 0x0f;
if ( b < 10 )
outChar(b+'0');
else
outChar(b+'a'-10);
}
void outHex8(uint8_t b)
{
outHexHalfByte(b >> 4);
outHexHalfByte(b);
}
void outHex16(uint16_t v)
{
outHex8(v>>8);
outHex8(v);
}
void outHex32(uint32_t v)
{
outHex16(v>>16);
outHex16(v);
}
void setRow(uint8_t r)
{
u8g2_x = 0;
u8g2_y = r;
}
/*=======================================================================*/
/* ADC Init */
void initADC(void)
{
//__disable_irq();
/* ADC and DMA Clock Enable */
RCC->APB2ENR |= RCC_APB2ENR_ADCEN; /* enable ADC clock */
RCC->AHBENR |= RCC_AHBENR_DMAEN; /* enable DMA clock */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* ADC Reset */
RCC->APB2RSTR |= RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
RCC->APB2RSTR &= ~RCC_APB2RSTR_ADCRST;
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* ADC Basic Setup */
ADC1->IER = 0; /* do not allow any interrupts */
ADC1->CFGR2 &= ~ADC_CFGR2_CKMODE; /* select HSI16 clock */
ADC1->CFGR1 = ADC_CFGR1_RES_1; /* 8 bit resolution */
ADC1->CR |= ADC_CR_ADVREGEN; /* enable ADC voltage regulator, probably not required, because this is automatically activated */
ADC->CCR |= ADC_CCR_VREFEN; /* Wake-up the VREFINT */
ADC->CCR |= ADC_CCR_TSEN; /* Wake-up the temperature sensor */
__NOP(); /* let us wait for some time */
__NOP(); /* let us wait for some time */
/* CALIBRATION */
if ((ADC1->CR & ADC_CR_ADEN) != 0) /* clear ADEN flag if required */
{
/* is this correct? i think we must use the disable flag here */
ADC1->CR &= (uint32_t)(~ADC_CR_ADEN);
}
ADC1->CR |= ADC_CR_ADCAL; /* start calibration */
while ((ADC1->ISR & ADC_ISR_EOCAL) == 0) /* wait for clibration finished */
{
}
ADC1->ISR |= ADC_ISR_EOCAL; /* clear the status flag, by writing 1 to it */
__NOP(); /* not sure why, but some nop's are required here, at least 4 of them */
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
}
/*=======================================================================*/
/* ADC Subtasks */
#define ADC_SUB_TASK_NONE 0
#define ADC_SUB_TASK_STOP_ADC 1
#define ADC_SUB_TASK_ENABLE_ADC 2
#define ADC_SUB_TASK_DISABLE_ADC 3
#define ADC_SUB_TASK_CONVERSION 4
#define ADC_SUB_STATE_INIT 0
#define ADC_SUB_STATE_ACTIVE 1
#define ADC_SUB_STATE_DONE 2
volatile uint8_t adc_sub_task = ADC_SUB_TASK_NONE;
volatile uint8_t adc_sub_state = ADC_SUB_STATE_INIT;
uint16_t adc_result = 0;
int adcIsSubDone(void)
{
if ( adc_sub_state == ADC_SUB_STATE_DONE )
return 1;
if ( adc_sub_task == ADC_SUB_TASK_NONE )
return 1;
return 0;
}
/*
int adcStartSubTask(uint8_t msg)
Args:
msg: One of ADC_SUB_TASK_STOP_ADC, ADC_SUB_TASK_ENABLE_ADC, ADC_SUB_TASK_DISABLE_ADC
Returns:
0 if there is any other subtask active
*/
int adcStartSubTask(uint8_t msg)
{
if ( adcIsSubDone() == 0 )
return 0;
adc_sub_task = msg;
adc_sub_state = ADC_SUB_STATE_INIT;
return 1;
}
/*
void adcExecSub(void)
Desc:
Executes any active ADC subtask. This can be executed inside an interrupt.
*/
void adcExecSub(void)
{
switch(adc_sub_task)
{
case ADC_SUB_TASK_STOP_ADC:
switch(adc_sub_state)
{
case ADC_SUB_STATE_INIT:
/* STOP ANY ADC CONVERSION */
ADC1->CR |= ADC_CR_ADSTP;
adc_sub_state = ADC_SUB_STATE_ACTIVE;
/* fall through */
case ADC_SUB_STATE_ACTIVE:
if ( (ADC1->CR & ADC_CR_ADSTP) == 0 )
adc_sub_state = ADC_SUB_STATE_DONE;
break;
}
break;
case ADC_SUB_TASK_ENABLE_ADC:
switch(adc_sub_state)
{
case ADC_SUB_STATE_INIT:
/* ENABLE ADC (but do not start) */
/* after the ADC is enabled, it must not be reconfigured */
ADC1->ISR |= ADC_ISR_ADRDY; /* clear ready flag */
ADC1->CR |= ADC_CR_ADEN; /* enable ADC */
adc_sub_state = ADC_SUB_STATE_ACTIVE;
/* fall through */
case ADC_SUB_STATE_ACTIVE:
if ( (ADC1->ISR & ADC_ISR_ADRDY) != 0 )
adc_sub_state = ADC_SUB_STATE_DONE;
break;
}
break;
case ADC_SUB_TASK_DISABLE_ADC:
switch(adc_sub_state)
{
case ADC_SUB_STATE_INIT:
/* required to change the configuration of the ADC */
/* Check for the ADEN flag. */
/* Setting ADDIS will fail if the ADC is alread disabled. */
if ((ADC1->CR & ADC_CR_ADEN) == 0)
{
adc_sub_state = ADC_SUB_STATE_DONE;
}
else
{
ADC1->CR |= ADC_CR_ADDIS;
if ( (ADC1->CR & ADC_CR_ADDIS) == 0 )
adc_sub_state = ADC_SUB_STATE_DONE;
else
adc_sub_state = ADC_SUB_STATE_ACTIVE;
}
break;
case ADC_SUB_STATE_ACTIVE:
if ((ADC1->CR & ADC_CR_ADEN) == 0)
{
adc_sub_state = ADC_SUB_STATE_DONE;
}
if ( (ADC1->CR & ADC_CR_ADDIS) == 0 )
{
adc_sub_state = ADC_SUB_STATE_DONE;
}
break;
}
break;
case ADC_SUB_TASK_CONVERSION:
switch(adc_sub_state)
{
case ADC_SUB_STATE_INIT:
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
adc_sub_state = ADC_SUB_STATE_ACTIVE;
/* fall through */
case ADC_SUB_STATE_ACTIVE:
if ( (ADC1->ISR & ADC_ISR_EOC) != 0 )
{
adc_sub_state = ADC_SUB_STATE_DONE;
adc_result = ADC1->DR;
}
break;
}
break;
}
}
/* STOP ANY ADC CONVERSION */
void stopADC(void)
{
//ADC1->CR |= ADC_CR_ADSTP;
//while(ADC1->CR & ADC_CR_ADSTP)
// ;
while( adcStartSubTask(ADC_SUB_TASK_STOP_ADC) == 0 )
adcExecSub();
while( adcIsSubDone() == 0 )
adcExecSub();
}
/* CONFIGURATION with ADEN=0 */
/* required to change the configuration of the ADC */
void disableADC(void)
{
/* Check for the ADEN flag. */
/* Setting ADDIS will fail if the ADC is alread disabled: The while loop will not terminate */
#ifdef xxxx
if ((ADC1->CR & ADC_CR_ADEN) != 0)
{
/* is this correct? i think we must use the disable flag here */
ADC1->CR |= ADC_CR_ADDIS;
while(ADC1->CR & ADC_CR_ADDIS)
;
}
#endif
while( adcStartSubTask(ADC_SUB_TASK_DISABLE_ADC) == 0 )
adcExecSub();
while( adcIsSubDone() == 0 )
adcExecSub();
}
/* ENABLE ADC (but do not start) */
/* after the ADC is enabled, it must not be reconfigured */
void enableADC(void)
{
//ADC1->ISR |= ADC_ISR_ADRDY; /* clear ready flag */
//ADC1->CR |= ADC_CR_ADEN; /* enable ADC */
//while ((ADC1->ISR & ADC_ISR_ADRDY) == 0) /* wait for ADC */
//{
//}
while( adcStartSubTask(ADC_SUB_TASK_ENABLE_ADC) == 0 )
adcExecSub();
while( adcIsSubDone() == 0 )
adcExecSub();
}
/*=======================================================================*/
/* ADC Single Conversion: 8 bit resolution */
/*
ch0 PA0 pin 6
ch1 PA1 pin 7
ch2 PA2 pin 8
ch3 PA3 pin 9
ch4 PA4 pin 10
ch5 PA5 pin 11
ch6 PA6 pin 12
ch7 PA7 pin 13
ch8 PB0 -
ch9 PB1 pin 14
ch 0..15: GPIO
ch 16: ???
ch 17: vref (bandgap)
ch18: temperature sensor
returns 8 bit result, right aligned
*/
uint8_t adc_single_conversion_channel = 5;
volatile uint8_t adc_single_conversion_state = 0;
uint16_t adc_single_conversion_result;
int adcStartSingleConversion(uint8_t channel)
{
if ( adc_single_conversion_state != 0 )
return 0;
adc_single_conversion_state = 1;
adc_single_conversion_channel = channel;
return 1;
}
void adcExecSingleConversion(void)
{
switch(adc_single_conversion_state)
{
case 1:
if ( adcStartSubTask(ADC_SUB_TASK_STOP_ADC) == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_state++;
/* fall through */
case 2:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_state++;
/* fall through */
case 3:
if ( adcStartSubTask(ADC_SUB_TASK_DISABLE_ADC) == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_state++;
/* fall through */
case 4:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
/* CONFIGURE ADC */
//ADC1->CFGR1 &= ~ADC_CFGR1_EXTEN; /* software enabled conversion start */
//ADC1->CFGR1 &= ~ADC_CFGR1_ALIGN; /* right alignment */
ADC1->CFGR1 = ADC_CFGR1_RES_1; /* 8 bit resolution */
//ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2; /* Select a sampling mode of 111 (very slow)*/
ADC1->SMPR = 0;
adc_single_conversion_state++;
/* fall through */
case 5:
if ( adcStartSubTask(ADC_SUB_TASK_ENABLE_ADC) == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_state++;
/* fall through */
case 6:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
ADC1->CHSELR = 1<<adc_single_conversion_channel; /* Select channel (can be done also if ADC is enabled) */
adc_single_conversion_state++;
/* fall through */
case 7:
if ( adcStartSubTask(ADC_SUB_TASK_CONVERSION) == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_state++;
/* fall through */
case 8:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
adc_single_conversion_result = adc_result;
adc_single_conversion_state = 0;
break;
}
}
uint16_t getADC(uint8_t ch)
{
while( adcStartSingleConversion(ch) == 0)
adcExecSingleConversion();
while( adc_single_conversion_state != 0 )
adcExecSingleConversion();
return adc_single_conversion_result;
}
/*=======================================================================*/
/* ADC Multi (DMA) Conversion: 12 bit resolution */
uint8_t adc_multi_conversion_channel = 6;
volatile uint8_t adc_multi_conversion_state = 0;
uint16_t adc_multi_conversion_count = 256;
uint16_t *adc_multi_conversion_buffer = NULL;
int adcStartMultiConversion(uint8_t channel, uint16_t cnt, uint16_t *buf)
{
if ( adc_multi_conversion_state != 0 )
return 0;
adc_multi_conversion_state = 1;
adc_multi_conversion_channel = channel;
adc_multi_conversion_count = cnt;
adc_multi_conversion_buffer = buf;
return 1;
}
void adcExecMultiConversion(void)
{
switch(adc_multi_conversion_state)
{
case 1:
if ( adcStartSubTask(ADC_SUB_TASK_STOP_ADC) == 0 )
{
adcExecSub();
break;
}
adc_multi_conversion_state++;
/* fall through */
case 2:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
adc_multi_conversion_state++;
/* fall through */
case 3:
if ( adcStartSubTask(ADC_SUB_TASK_DISABLE_ADC) == 0 )
{
adcExecSub();
break;
}
adc_multi_conversion_state++;
/* fall through */
case 4:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
/* CONFIGURE ADC */
/* disable and reset to defaults */
DMA1_Channel1->CCR = 0;
/* defaults:
- 8 Bit access --> will be changed below
- read from peripheral --> ok
- none-circular mode --> ok
- no increment mode --> will be changed below
*/
DMA1_Channel1->CNDTR = adc_multi_conversion_count; /* buffer size */
DMA1_Channel1->CPAR = (uint32_t)&(ADC1->DR); /* source value */
// DMA1_Channel1->CPAR = (uint32_t)&(GPIOA->ODR); /* source value */
DMA1_Channel1->CMAR = (uint32_t)adc_multi_conversion_buffer; /* destination memory */
DMA1_CSELR->CSELR &= ~DMA_CSELR_C1S; /* 0000: select ADC for DMA CH 1 (this is reset default) */
DMA1_CSELR->CSELR &= ~DMA_CSELR_C2S; /* 0000: select ADC for DMA CH 2 (this is reset default) */
DMA1_Channel1->CCR |= DMA_CCR_MINC; /* increment memory */
DMA1_Channel1->CCR |= DMA_CCR_MSIZE_0; /* 01: 16 Bit access */
DMA1_Channel1->CCR |= DMA_CCR_PSIZE_0; /* 01: 16 Bit access */
DMA1_Channel1->CCR |= DMA_CCR_EN; /* enable */
/*
detect rising edge on external trigger (ADC_CFGR1_EXTEN_0)
recive trigger from TIM2 (ADC_CFGR1_EXTSEL_1)
8 Bit resolution (ADC_CFGR1_RES_1)
Use DMA one shot mode and enable DMA (ADC_CFGR1_DMAEN)
Once DMA is finished, it will disable continues mode (ADC_CFGR1_CONT)
*/
ADC1->CFGR1 =
ADC_CFGR1_CONT /* continues mode */
| ADC_CFGR1_EXTEN_0 /* rising edge */
// | ADC_CFGR1_EXTEN_1 /* */
| ADC_CFGR1_EXTSEL_1 /* TIM2 */
// | ADC_CFGR1_RES_1 /* 8 Bit resolution, no value means 12 bit */
| ADC_CFGR1_DMAEN; /* enable generation of DMA requests */
//ADC1->SMPR |= ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 | ADC_SMPR_SMP_2;
//ADC1->SMPR = ADC_SMPR_SMP_1 ;
//ADC1->SMPR = ADC_SMPR_SMP_0 | ADC_SMPR_SMP_1 ;
ADC1->SMPR = ADC_SMPR_SMP_2 ;
/*
12.5 + 8.5 = 21 ADC Cycles pre ADC sampling
4 MHz / 21 cycle / 256 = 744 Hz
*/
adc_multi_conversion_state++;
/* fall through */
case 5:
if ( adcStartSubTask(ADC_SUB_TASK_ENABLE_ADC) == 0 )
{
adcExecSub();
break;
}
adc_multi_conversion_state++;
/* fall through */
case 6:
if ( adcIsSubDone() == 0 )
{
adcExecSub();
break;
}
ADC1->CHSELR = 1<<adc_multi_conversion_channel; /* Select channel (can be done also if ADC is enabled) */
/* conversion will be started automatically with rising edge of TIM2, yet ADSTART is still required */
ADC1->CR |= ADC_CR_ADSTART; /* start the ADC conversion */
adc_multi_conversion_state++;
/* fall through */
case 7:
if ( DMA1_Channel1->CNDTR > 0 )
break;
adc_multi_conversion_state = 0;
break;
}
}
/* 12 bit resolution */
void scanADC(uint8_t ch, uint16_t cnt, uint16_t *buf)
{
while( adcStartMultiConversion(ch, cnt, buf) == 0)
adcExecMultiConversion();
while( adc_multi_conversion_state != 0 )
adcExecMultiConversion();
}
/*=======================================================================*/
/*
5000Hz Data Acquisition
Acqusition:
1./2. Read DC Motor Voltage into buffer 1
3./4. Read DC Motor Voltage into buffer 2
5./6. Read signle ADC from the variable resistor
parallel: Calculate noise via difference signal
*/
volatile uint16_t adc_variable_resistor_value = 0;
volatile uint8_t adc_acquisition_state = 0;
volatile uint8_t adc_calculation_state = 0;
#define BUF_MUL 2
uint16_t adc_buf[128*BUF_MUL];
uint16_t adc_buf2[128*BUF_MUL];
uint16_t adc_diff[128*BUF_MUL];
uint32_t adc_diff_sum_tmp = 0;
uint16_t adc_diff_sum_cnt = 0;
volatile uint32_t adc_diff_sum = 0;
volatile uint16_t adc_diff_noise_per_sample_raw = 0; // scaled by 8 bits
volatile uint16_t adc_diff_noise_per_sample_filt = 0; // scaled by 8 bits
volatile uint16_t adc_max_tmp = 0;
volatile uint16_t adc_max_raw = 0;
volatile uint16_t adc_max_filt = 0;
volatile uint16_t adc_calculation_pos;
/* 128*BUF_MUL / ADC_CALC_PER_STEP must have no reminder */
#define ADC_CALC_PER_STEP 32
void adcExecAcquisition(void)
{
uint16_t i;
uint16_t a, b, d, z;
switch(adc_acquisition_state)
{
case 1:
if ( adcStartMultiConversion(6, 128*BUF_MUL, adc_buf) == 0)
{
adcExecMultiConversion();
break;
}
adc_acquisition_state++;
/* fall through */
case 2:
if ( adc_multi_conversion_state != 0 )
{
adcExecMultiConversion();
break;
}
adc_acquisition_state++;
/* fall through */
case 3:
if ( adcStartMultiConversion(6, 128*BUF_MUL, adc_buf2) == 0)
{
adcExecMultiConversion();
break;
}
adc_acquisition_state++;
/* fall through */
case 4:
if ( adc_multi_conversion_state != 0 )
{
adcExecMultiConversion();
break;
}
adc_acquisition_state++;
adc_calculation_state = 1;
adc_calculation_pos = 0;
adc_diff_sum_tmp = 0;
adc_diff_sum_cnt = 0;
adc_max_tmp = 0;
/* fall through */
case 5:
if ( adcStartSingleConversion(5) == 0)
{
adcExecSingleConversion();
break;
}
adc_acquisition_state++;
/* fall through */
case 6:
if ( adc_single_conversion_state != 0 )
{
adcExecSingleConversion();
break;
}
adc_variable_resistor_value = adc_single_conversion_result;
adc_acquisition_state++;
/* fall through */
case 7:
if ( adc_calculation_state >= 2 ) // wait for calculation
{
adc_acquisition_state = 1;
adc_calculation_state = 0;
}
break;
}
switch(adc_calculation_state)
{
case 1:
i = adc_calculation_pos;
adc_calculation_pos += ADC_CALC_PER_STEP;
if ( adc_calculation_pos >= 128U*BUF_MUL )
adc_calculation_pos = 128U*BUF_MUL;
while( i < adc_calculation_pos )
{
a = adc_buf[i];
b = adc_buf2[i];
if ( a > b )
d = a - b;
else
d = b - a;
/* ignore values around 0 and very large differences (spikes)
At least values 0 and 1 for a should be ignored.
Height of the spices is not really clear.
*/
if ( a > 4 && b > 4 && d < 24)
{
adc_diff_sum_tmp += d;
adc_diff_sum_cnt++;
z = a + b;
z >>= 1;
if ( adc_max_tmp < z )
adc_max_tmp = z;
}
adc_diff[i] = d;
i++;
}
if ( adc_calculation_pos >= 128U*BUF_MUL )
{
adc_calculation_pos = 0;
adc_diff_sum = adc_diff_sum_tmp;
adc_diff_noise_per_sample_raw = (adc_diff_sum_tmp * 256UL)/adc_diff_sum_cnt;
i2c_mem[2] = adc_diff_noise_per_sample_raw & 255;
i2c_mem[3] = adc_diff_noise_per_sample_raw>>8;
/*
this is a strong low-pass filter
currently the filter value is calculated with 100Hz (every 5th duty cycle)
3V DC Motor: adc_diff_noise_per_sample_filt < 0x0600 stop, adc_diff_noise_per_sample_filt > 0x0700 running
*/
adc_diff_noise_per_sample_filt = (((((1UL<<5) - 1)*(uint32_t)adc_diff_noise_per_sample_filt)) + (uint32_t)((1*adc_diff_noise_per_sample_raw)))>>5;
i2c_mem[4] = adc_diff_noise_per_sample_filt & 255;
i2c_mem[5] = adc_diff_noise_per_sample_filt>>8;
/*
low-pass filter for the max value of the ADC.
If the DC motor rotates, then the max value indicates speed: lower values are faster, higher values are slower
3V DC Motor: values are from 0x0160 (fastest) to >0x4b0 (almost stopped)
*/
adc_max_raw = adc_max_tmp;
i2c_mem[6] = adc_max_raw & 255;
i2c_mem[7] = adc_max_raw>>8;
adc_max_filt = (((((1UL<<5) - 1)*(uint32_t)adc_max_filt)) + (uint32_t)((1*adc_max_raw))) >> 5;
i2c_mem[8] = adc_max_filt & 255;
i2c_mem[9] = adc_max_filt>>8;
adc_calculation_state++;
}
break;
}
}
/*=======================================================================*/
/* TIM2: PWM signal for the DC Motor */
//#define TIM_CYCLE_TIME 5355
/* 7950 --> 500Hz */
#define TIM_CYCLE_TIME 7950
#define TIM_CYCLE_UPPER_SKIP 100
#define TIM_CYCLE_LOWER_SKIP 200
void initTIM2(uint8_t is_gpio_a)
{
/* enable clock for TIM2 */
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
/* prescalar for AHB and APB1 */
/* reselt defaults for HPRE and PPRE1: no clock division */
// RCC->CFGR &= ~RCC_CFGR_HPRE;
// RCC->CFGR |= RCC_CFGR_HPRE_DIV1;
// RCC->CFGR &= ~RCC_CFGR_PPRE1;
// RCC->CFGR |= RCC_CFGR_PPRE1_DIV1;
/* configure GPIOA PA1 for TIM2 */
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PA1 */
GPIOA->MODER |= GPIO_MODER_MODE1_1; /* alt fn */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* push-pull */
GPIOA->AFR[0] &= ~(15<<4); /* Clear Alternate Function PA1 */
GPIOA->AFR[0] |= 2<<4; /* AF2 Alternate Function PA1 */
/* configure GPIOA PB1 for TIM2 */
GPIOB->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PB1 */
GPIOB->MODER |= GPIO_MODER_MODE1_1; /* alt fn */
GPIOB->OTYPER &= ~GPIO_OTYPER_OT_1; /* push-pull */
GPIOB->AFR[0] &= ~(15<<4); /* Clear Alternate Function PB1 */
GPIOB->AFR[0] |= 5<<4; /* AF5 Alternate Function PB1 */
/* TIM2 configure */
/* disable all interrupts */
//TIM2->DIER = 0; /* 0 is reset default value */
/* clear everything, including the "Update disable" flag, so that updates */
/* are generated */
// TIM2->CR1 = 0; /* 0 is reset default value */
//TIM2->CR1 |= TIM_CR1_ARPE; // ARR is not modified so constant update is ok
/* Update request by manual UG bit setting or slave controller */
/* both is not required here */
/* so, update request by couter over/underflow remains */
//TIM2->CR1 |= TIM_CR1_URS; /* only udf/ovf generae events */
TIM2->CR2 |= TIM_CR2_MMS_1; /* Update event for TRGO */
TIM2->ARR = TIM_CYCLE_TIME; /* total cycle count */
TIM2->CCR2 = 1024; /* duty cycle for channel 2 (PA1) */
TIM2->CCR4 = 1024; /* duty cycle for channel 4 (PB1) */
//TIM2->CCMR1 &= ~TIM_CCMR1_OC2CE; /* disable clear output compare 2 **/
TIM2->CCMR1 |= TIM_CCMR1_OC2M; /* all 3 bits set: PWM Mode 2 */
TIM2->CCMR1 |= TIM_CCMR1_OC2PE; /* preload enable CCR2 is preloaded*/
TIM2->CCER |= TIM_CCER_CC2P; /* polarity 0: normal (reset default) / 1: inverted*/
TIM2->CCMR2 |= TIM_CCMR2_OC4M; /* all 3 bits set: PWM Mode 2 */
TIM2->CCMR2 |= TIM_CCMR2_OC4PE; /* preload enable CCR2 is preloaded*/
TIM2->CCER |= TIM_CCER_CC4P; /* polarity 0: normal (reset default) / 1: inverted*/
if ( is_gpio_a )
TIM2->CCER |= TIM_CCER_CC2E; /* set output enable for channel 2 */
else
TIM2->CCER |= TIM_CCER_CC4E; /* set output enable for channel 4 */
TIM2->PSC = 7; /* divide by 8 */
TIM2->CR1 |= TIM_CR1_CEN; /* counter enable */
/*
TIM2 cycle:
32000000Hz / 5355 / 8 = 747 Hz
*/
}
void setTIM2RawDuty(uint32_t duty_cycle, uint8_t is_gpio_a)
{
TIM2->CCR2 = duty_cycle;
TIM2->CCR4 = duty_cycle;
if ( is_gpio_a )
{
TIM2->CCMR1 |= TIM_CCMR1_OC2M; /* all 3 bits set: PWM Mode 2 */
TIM2->CCER |= TIM_CCER_CC2E; /* set output enable for channel 2 */
//TIM2->CCER &= ~TIM_CCER_CC4E; /* set output disable for channel 4 */
TIM2->CCMR2 &= ~TIM_CCMR2_OC4M_1; /* Mode 101 force high */
}
else
{
TIM2->CCMR2 |= TIM_CCMR2_OC4M; /* all 3 bits set: PWM Mode 2 */
TIM2->CCER |= TIM_CCER_CC4E; /* set output enable for channel 4 */
//TIM2->CCER &= ~TIM_CCER_CC2E; /* set output disable for channel 2 */
TIM2->CCMR1 &= ~TIM_CCMR1_OC2M_1; /* Mode 101 force high */
}
}
/*=======================================================================*/
/* TIM22 */
/*
TIM22: 0.2ms IRQ
Assumptions:
APB2: 32MHz
GPIO A anabled
*/
void initTIM22(void)
{
RCC->APB2ENR |= RCC_APB2ENR_TIM22EN;
/* configure GPIOA PA7 for TIM2 CH2*/
GPIOA->MODER &= ~GPIO_MODER_MODE7; /* clear mode for PA1 */
GPIOA->MODER |= GPIO_MODER_MODE7_1; /* alt fn */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_7; /* push-pull */
GPIOA->AFR[0] &= ~(15<<28); /* Clear Alternate Function PA7 */
//GPIOA->AFR[0] |= 5<<28; /* AF5 Alternate Function PA7 NOTE: OUTPUT at PA7 influences ADC! */
TIM22->CR2 |= TIM_CR2_MMS_1; /* Update event for TRGO */
TIM22->ARR = 6400; /* 0.2ms (5000Hz) with 32MHz */
TIM22->CCR2 = 2000; /* duty cycle for channel 2 (PA7) */
TIM22->CCMR1 |= TIM_CCMR1_OC2M; /* all 3 bits set: PWM Mode 2 */
TIM22->CCMR1 |= TIM_CCMR1_OC2PE; /* preload enable --> more accurate duty cycle visible */
TIM22->CCER |= TIM_CCER_CC2E; /* set output enable for channel 2 */
TIM22->CCER |= TIM_CCER_CC2P; /* polarity 0: normal (reset default) / 1: inverted*/
TIM22->PSC = 0; /* divide by 1 */
TIM22->DIER |= TIM_DIER_UIE; /* enable TIM22 update interrupt: call TIM22_IRQHandler on reload */
/* enable IRQ in NVIC */
NVIC_SetPriority(TIM22_IRQn, 0);
NVIC_EnableIRQ(TIM22_IRQn);
TIM22->CR1 |= TIM_CR1_CEN; /* counter enable */
adc_acquisition_state = 1; /* enable data acquisition */
}
volatile uint16_t adc_max;
void __attribute__ ((interrupt, used)) TIM22_IRQHandler(void)
{
/*
the following loop requires about 5000 clock cycles 1/3 of the IRQ time:
uint16_t i;
adc_max = 0;
for( i = 0; i < 256; i++ )
{
adc_max += TIM22->CNT;
}
*/
adcExecAcquisition();
TIM22->CCR2 = TIM22->CNT; /* store the current count value in compare register: duty cycle signals load */
TIM22->SR &= ~TIM_SR_UIF; /* clear interrupt */
}
/*=======================================================================*/
/* I2C */
volatile uint16_t i2c_total_irq_cnt;
volatile uint16_t i2c_TXIS_cnt;
volatile uint16_t i2c_RXNE_cnt;
void i2c_mem_reset_write(void)
{
i2c_is_write_idx = 1;
}
void i2c_mem_init(void)
{
i2c_idx = 0;
i2c_mem_reset_write();
}
void i2c_mem_set_index(unsigned char value)
{
i2c_idx = value;
i2c_is_write_idx = 0;
}
void i2c_mem_write_via_index(unsigned char value)
{
if ( i2c_idx == 0 )
{
/* additionall put this byte into the queue */
//addCmdToGPIOQueue(value);
}
i2c_mem[i2c_idx++] = value;
}
unsigned char i2c_mem_read(void)
{
i2c_mem_reset_write();
i2c_idx++;
return i2c_mem[i2c_idx];
}
void i2c_mem_write(unsigned char value)
{
if ( i2c_is_write_idx != 0 )
{
i2c_mem_set_index(value);
}
else
{
i2c_is_write_idx = 0;
i2c_mem_write_via_index(value);
}
}
/* address: I2C address multiplied by 2 */
/* Pins PA9 (SCL) and PA10 (SDA) */
void i2c_hw_init(unsigned char address)
{
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; /* Enable clock for I2C */
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP(); /* extra delay for clock stabilization required? */
__NOP();
/* configure io */
GPIOA->MODER &= ~GPIO_MODER_MODE9; /* clear mode for PA9 */
GPIOA->MODER |= GPIO_MODER_MODE9_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_9; /* open drain */
GPIOA->AFR[1] &= ~(15<<4); /* Clear Alternate Function PA9 */
GPIOA->AFR[1] |= 1<<4; /* I2C Alternate Function PA9 */
GPIOA->MODER &= ~GPIO_MODER_MODE10; /* clear mode for PA10 */
GPIOA->MODER |= GPIO_MODER_MODE10_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_10; /* open drain */
GPIOA->AFR[1] &= ~(15<<8); /* Clear Alternate Function PA10 */
GPIOA->AFR[1] |= 1<<8; /* I2C Alternate Function PA10 */
RCC->CCIPR &= ~RCC_CCIPR_I2C1SEL; /* write 00 to the I2C clk selection register */
RCC->CCIPR |= RCC_CCIPR_I2C1SEL_0; /* select system clock (01) */
/* I2C init flow chart: Clear PE bit */
I2C1->CR1 &= ~I2C_CR1_PE;
/* I2C init flow chart: Configure filter */
/* leave at defaults */
/* I2C init flow chart: Configure timing */
/*
standard mode 100kHz configuration
SYSCLK = I2CCLK = 32 MHz
PRESC = 6 bits 28..31
SCLL = 0x13 bits 0..7
SCLH = 0x0f bits 8..15
SDADEL = 0x02 bits 16..19
SCLDEL = 0x04 bits 20..23
*/
I2C1->TIMINGR = 0x60420f13;
/* I2C init flow chart: Configure NOSTRECH */
I2C1->CR1 |= I2C_CR1_NOSTRETCH;
/* I2C init flow chart: Enable I2C */
I2C1->CR1 |= I2C_CR1_PE;
/* disable OAR1 for reconfiguration */
I2C1->OAR1 &= ~I2C_OAR1_OA1EN;
I2C1->OAR1 = address;
I2C1->OAR1 |= I2C_OAR1_OA1EN;
/* enable interrupts */
I2C1->CR1 |= I2C_CR1_STOPIE;
I2C1->CR1 |= I2C_CR1_NACKIE;
//I2C1->CR1 |= I2C_CR1_ADDRIE;
I2C1->CR1 |= I2C_CR1_RXIE;
I2C1->CR1 |= I2C_CR1_TXIE;
/* load first value into TXDR register */
I2C1->TXDR = i2c_mem[i2c_idx];
/* enable IRQ in NVIC */
NVIC_SetPriority(I2C1_IRQn, 0);
NVIC_EnableIRQ(I2C1_IRQn);
}
void i2c_init(unsigned char address)
{
i2c_mem_init();
i2c_mem[0] = 0x080; /* stop */
i2c_hw_init(address);
}
void __attribute__ ((interrupt, used)) I2C1_IRQHandler(void)
{
unsigned long isr = I2C1->ISR;
i2c_total_irq_cnt ++;
if ( isr & I2C_ISR_TXIS )
{
i2c_TXIS_cnt++;
I2C1->TXDR = i2c_mem_read();
}
else if ( isr & I2C_ISR_RXNE )
{
i2c_RXNE_cnt++;
i2c_mem_write(I2C1->RXDR);
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
}
else if ( isr & I2C_ISR_STOPF )
{
I2C1->ICR = I2C_ICR_STOPCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_NACKF )
{
I2C1->ICR = I2C_ICR_NACKCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_ADDR )
{
/* not required, the addr match interrupt is not enabled */
I2C1->ICR = I2C_ICR_ADDRCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
/* if at any time the addr match is set, clear the flag */
/* not sure, whether this is required */
if ( isr & I2C_ISR_ADDR )
{
I2C1->ICR = I2C_ICR_ADDRCF;
}
}
/*=======================================================================*/
int main()
{
uint16_t adc_value = 0x80;
uint16_t old_adc_value = 0x0ffff;
uint16_t tim_duty;
uint16_t zero_pos;
uint16_t i;
u8g2_uint_t y, yy;
uint8_t is_i2c = 0;
setHSIClock(); /* enable 32 MHz Clock */
startUp(); /* enable systick irq and several power regions */
i2c_init(40*2); /* activage I2C, adr = 40 */
initDisplay(); /* aktivate display */
initADC();
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->IOPENR |= RCC_IOPENR_IOPBEN; /* Enable clock for GPIO Port B */
__NOP();
__NOP();
GPIOA->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PA1 */
GPIOA->MODER |= GPIO_MODER_MODE1_0; /* Output mode for PA1 */
GPIOA->OTYPER &= ~GPIO_OTYPER_OT_1; /* no Push/Pull for PA1 */
GPIOA->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED1; /* low speed for PA1 */
GPIOA->PUPDR &= ~GPIO_PUPDR_PUPD1; /* no pullup/pulldown for PA1 */
GPIOA->BSRR = GPIO_BSRR_BS_1; /* atomic set PA1 */
GPIOB->MODER &= ~GPIO_MODER_MODE1; /* clear mode for PB1 */
GPIOB->MODER |= GPIO_MODER_MODE1_0; /* Output mode for PB1 */
//GPIOB->OTYPER &= ~GPIO_OTYPER_OT_1; /* no Push/Pull for PB1 */
GPIOB->OSPEEDR &= ~GPIO_OSPEEDER_OSPEED1; /* low speed for PB1 */
GPIOB->PUPDR &= ~GPIO_PUPDR_PUPD1; /* no pullup/pulldown for PB1 */
GPIOB->BSRR = GPIO_BSRR_BR_1; /* atomic reset PB1 */
initTIM2(1);
initTIM22();
for(;;)
{
u8g2_ClearBuffer(&u8g2);
if ( is_i2c != 0 )
{
adc_value = i2c_mem[0];
}
else
{
if ( i2c_mem[0] != 0x080 )
{
adc_value = i2c_mem[0];
is_i2c = 1;
}
else
{
adc_value = adc_variable_resistor_value;
}
}
if ( old_adc_value != adc_value )
{
if ( adc_value >= 0x080 )
{
tim_duty = ((uint32_t)((adc_value-0x080)*2)*((uint32_t)TIM_CYCLE_TIME-TIM_CYCLE_UPPER_SKIP-TIM_CYCLE_LOWER_SKIP))>>8;
tim_duty += TIM_CYCLE_LOWER_SKIP;
setTIM2RawDuty(tim_duty, 1);
}
else
{
tim_duty = ((uint32_t)((0x080 - adc_value)*2)*((uint32_t)TIM_CYCLE_TIME-TIM_CYCLE_UPPER_SKIP-TIM_CYCLE_LOWER_SKIP))>>8;
tim_duty += TIM_CYCLE_LOWER_SKIP;
setTIM2RawDuty(tim_duty, 0);
}
old_adc_value = adc_value;
}
yy = 60;
zero_pos = ((uint32_t)tim_duty * (uint32_t)256) / (uint32_t)TIM_CYCLE_TIME;
zero_pos +=4;
zero_pos += (256-zero_pos)>>6;
setRow(10); outHex16(adc_value);
outStr(" "); outHex16(adc_diff_noise_per_sample_filt);
//outStr(" "); outHex16(adc_diff_sum_cnt);
outStr(" "); outHex16(adc_max_raw);
outStr(" "); outHex16(adc_max_filt);
//outStr("|"); outHex8(adc_buf[zero_pos/2]); outStr("|"); outHex8(adc_buf[zero_pos]);
u8g2_DrawVLine(&u8g2, zero_pos/2, yy-7, 15);
u8g2_DrawVLine(&u8g2, zero_pos/4, yy-7, 15);
for( i = 0; i < 128; i++ )
{
y = 60-(adc_buf[i*BUF_MUL]>>5);
//y = 60-(adc_diff[i*BUF_MUL]>>2);
u8g2_DrawPixel(&u8g2, i, y);
if ( y < yy )
u8g2_DrawVLine(&u8g2, i, y, yy-y+1);
else
u8g2_DrawVLine(&u8g2, i, yy, y-yy+1);
yy = y;
}
u8g2_SendBuffer(&u8g2);
}
return 0;
}