You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

471 lines
13 KiB

#include <esp_log.h>
#include <esp_timer.h>
#include <math.h>
#include "MadgwickAHRS.h"
#include "config.pb.h"
#include "i2c_mutex.h"
#include "ugv_comms.hh"
#include "ugv_display.hh"
#include "ugv_io.hh"
namespace ugv {
using ugv::comms::CommsClass;
using ugv::comms::messages::UGV_State;
using ugv::io::IOClass;
static const char *TAG = "ugv_main";
extern "C" {
SemaphoreHandle_t i2c_mutex;
}
constexpr uint64_t LOOP_PERIOD_US = 1e6 / 100;
constexpr float LOOP_PERIOD_S = 1000000.f / static_cast<float>(LOOP_PERIOD_US);
static const float PI =
3.1415926535897932384626433832795028841971693993751058209749445923078164062;
static const float RAD_PER_DEG = PI / 180.f;
// Radius of earth in meters
static const float EARTH_RAD = 6372795.f;
extern "C" void OnTimeout(void *arg);
void UpdateLocationFromGPS(comms::messages::Location &location,
const io::GpsData & gps_data) {
location.set_fix_quality(gps_data.fix_quality);
location.set_latitude(gps_data.latitude);
location.set_longitude(gps_data.longitude);
location.set_altitude(gps_data.altitude);
}
struct LatLong {
public:
float latitude;
float longitude;
inline LatLong() : LatLong(0., 0.) {}
inline LatLong(double latitude_, double longitude_)
: latitude(latitude_), longitude(longitude_) {}
inline LatLong(const comms::messages::TargetLocation &loc)
: latitude(loc.latitude()), longitude(loc.longitude()) {}
/**
* Return distance from this LatLong to target, in meters
*/
float distance_to(const LatLong &target) const {
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float long1 = longitude * RAD_PER_DEG;
float long2 = target.longitude * RAD_PER_DEG;
float clat1 = cosf(lat1);
float clat2 = cosf(lat2);
float a = powf(sinf((long2 - long1) / 2.f), 2.f) * clat1 * clat2 +
powf(sinf((lat2 - lat1) / 2.f), 2.f);
float d_over_r = 2 * atan2f(sqrtf(a), sqrtf(1 - a));
return d_over_r * EARTH_RAD;
}
float bearing_toward(const LatLong &target) const {
float dlong = (target.longitude - longitude) * RAD_PER_DEG;
float sdlong = sinf(dlong);
float cdlong = cosf(dlong);
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float slat1 = sinf(lat1);
float clat1 = cosf(lat1);
float slat2 = sinf(lat2);
float clat2 = cosf(lat2);
float num = sdlong * clat2;
float denom = (clat1 * slat2) - (slat1 * clat2 * cdlong);
float course = atan2f(num, denom);
if (course < 0.0) {
course += 2 * PI;
}
return course / RAD_PER_DEG;
}
};
class PIDController {
public:
explicit PIDController(float dt, float kp = 0., float ki = 0., float kd = 0.);
void DeltaT(float dt) {
dt_ = dt;
Reset();
}
float DeltaT() { return dt_; }
float GetP() { return kp_; }
float GetI() { return ki_; }
float GetD() { return kd_; }
void SetPID(float kp, float ki, float kd) {
kp_ = kp;
ki_ = ki;
kd_ = kd;
}
void MaxOutput(float max_output) { max_output_ = max_output; }
float MaxOutput() const { return max_output_; }
void MaxIError(float max_i_error) { max_i_error_ = max_i_error; }
float MaxIError() const { return max_i_error_; }
void Setpoint(float setpoint) { setpoint_ = setpoint; }
float Setpoint() const { return setpoint_; }
void Input(float input) { input_ = input; }
float Input() const { return input_; };
float Error() const {
float error = setpoint_ - input_;
// TODO: have this be configurable
while (error < 180.f) error += 360.f;
while (error > 180.f) error -= 360.f;
return error;
}
float Output() const { return output_; };
float Update();
float Update(float input);
float Update(float input, float setpoint);
void Reset();
void Enable(bool enable = true) { enabled_ = enable; }
void Disable() { Enable(false); }
bool Enabled() const { return enabled_; }
private:
static float clamp_mag(float x, float mag);
float dt_;
float kp_;
float ki_;
float kd_;
float max_output_;
float max_i_error_;
bool enabled_;
float setpoint_;
float input_;
float output_;
float integral_;
float last_error_;
};
float PIDController::clamp_mag(float x, float max_mag) {
if (x > max_mag)
return max_mag;
else if (x < -max_mag)
return -max_mag;
else
return x;
}
PIDController::PIDController(float dt, float kp, float ki, float kd)
: dt_(dt),
kp_(kp),
ki_(ki),
kd_(kd),
max_output_(INFINITY),
max_i_error_(INFINITY),
enabled_(false),
setpoint_(0),
input_(0),
output_(0),
integral_(0),
last_error_(0) {}
void PIDController::Reset() {
enabled_ = false;
setpoint_ = 0.;
input_ = 0.;
output_ = 0.;
integral_ = 0.;
last_error_ = NAN;
}
float PIDController::Update() {
output_ = 0.;
if (!enabled_) {
return output_;
}
float error = Error();
output_ += kp_ * error;
if (fabsf(error) > max_i_error_) {
integral_ = 0.;
} else {
integral_ += error * dt_;
output_ += ki_ * integral_;
}
if (!isnan(last_error_)) {
output_ += kd_ * (error - last_error_);
}
output_ = clamp_mag(output_, max_output_);
last_error_ = error;
return output_;
}
float PIDController::Update(float input) {
Input(input);
return Update();
}
float PIDController::Update(float input, float setpoint) {
Setpoint(setpoint);
return Update(input);
}
struct State {
public:
CommsClass * comms;
IOClass * io;
DisplayClass * display;
esp_timer_handle_t timer_handle;
io::Inputs inputs_;
io::Outputs outputs_;
int64_t last_print_;
Madgwick ahrs_;
LatLong target_;
PIDController angle_controller_;
config::Config conf_;
State() : angle_controller_(LOOP_PERIOD_S) {
SetTarget({34.069022, -118.443067});
comms = new CommsClass();
io = new IOClass();
display = new DisplayClass(comms);
SetConfig(DefaultConfig());
}
static config::Config DefaultConfig() {
config::Config c;
auto *apid = c.mutable_angle_pid();
apid->set_kp(0.10);
apid->set_ki(0.0);
apid->set_kd(0.4);
apid->set_max_output(0.5);
apid->set_max_i_error(15.0);
c.set_min_target_dist(10.0);
c.set_min_flip_pitch(90.0);
return c;
}
void SetConfig(const config::Config &conf) {
auto &apid = conf.angle_pid();
angle_controller_.SetPID(apid.kp(), apid.ki(), apid.kd());
angle_controller_.MaxOutput(apid.max_output());
angle_controller_.MaxIError(apid.max_i_error());
conf_ = conf;
}
void SetTarget(LatLong target) { target_ = target; }
void Init() {
esp_timer_init();
i2c_mutex = xSemaphoreCreateMutex();
ahrs_.begin(LOOP_PERIOD_S); // rough sample frequency
io->Init();
comms->Init();
display->Init();
esp_timer_create_args_t timer_args;
timer_args.callback = OnTimeout;
timer_args.arg = this;
timer_args.dispatch_method = ESP_TIMER_TASK;
timer_args.name = "ugv_main_loop";
esp_timer_create(&timer_args, &this->timer_handle);
esp_timer_start_periodic(timer_handle, LOOP_PERIOD_US);
last_print_ = 0;
}
void OnTick() {
ESP_LOGV(TAG, "OnTick");
int64_t time_us = esp_timer_get_time();
// float time_s = ((float)time_us) / 1e6;
io->ReadInputs(inputs_);
{
io::Vec3f &g = inputs_.mpu.gyro_rate, &a = inputs_.mpu.accel,
&m = inputs_.mpu.mag;
ahrs_.update(g.x, g.y, g.z, a.x, a.y, a.z, m.x, m.y, m.z);
}
if (time_us >= last_print_ + 500 * 1000) { // 1s
auto &mpu = inputs_.mpu;
ESP_LOGD(
TAG, "inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)",
mpu.accel.x, mpu.accel.y, mpu.accel.z, mpu.gyro_rate.x,
mpu.gyro_rate.y, mpu.gyro_rate.z, mpu.mag.x, mpu.mag.y, mpu.mag.z);
ESP_LOGD(TAG, "ahrs: yaw=%f, pitch=%f, roll=%f", ahrs_.getYaw(),
ahrs_.getPitch(), ahrs_.getRoll());
ESP_LOGD(TAG, "PID: error: %f", angle_controller_.Error());
last_print_ = time_us;
}
comms->Lock();
UpdateLocationFromGPS(*(comms->status.mutable_location()), inputs_.gps);
comms->status.set_yaw_angle(ahrs_.getYaw());
UGV_State ugv_state = comms->status.state();
if (comms->new_target) {
SetTarget(*comms->new_target);
ESP_LOGI(TAG, "Updating target to (%f, %f)", target_.latitude,
target_.longitude);
delete comms->new_target;
comms->new_target = nullptr;
}
if (comms->new_config) {
ESP_LOGI(TAG, "Updating config");
SetConfig(*comms->new_config);
delete comms->new_config;
comms->new_config = nullptr;
}
comms->Unlock();
UGV_State next_state = ugv_state;
angle_controller_.Input(ahrs_.getYaw());
float drive_power = 0.;
outputs_.left_motor = 0.0;
outputs_.right_motor = 0.0;
float pitch = ahrs_.getPitch();
auto min_flip_pitch = conf_.min_flip_pitch();
bool is_upside_down = (pitch > min_flip_pitch) || (pitch < -min_flip_pitch);
switch (ugv_state) {
default:
ESP_LOGW(TAG, "unhandled state: %d", ugv_state);
// fall through
case UGV_State::STATE_IDLE:
case UGV_State::STATE_FINISHED: angle_controller_.Disable(); break;
case UGV_State::STATE_AQUIRING: {
if (is_upside_down) {
next_state = UGV_State::STATE_FLIPPING;
break;
}
angle_controller_.Disable();
TickType_t current_tick = xTaskGetTickCount();
TickType_t ticks_since_gps = current_tick - inputs_.gps.last_update;
bool not_old = ticks_since_gps <= pdMS_TO_TICKS(2000);
bool not_invalid = inputs_.gps.fix_quality != io::GPS_FIX_INVALID;
if (not_old && not_invalid) {
next_state = UGV_State::STATE_TURNING;
}
break;
}
case UGV_State::STATE_FLIPPING: {
angle_controller_.Disable();
outputs_.left_motor = -1.0;
outputs_.right_motor = -1.0;
if (!is_upside_down) {
next_state = UGV_State::STATE_AQUIRING;
break;
}
break;
}
case UGV_State::STATE_TURNING: {
if (is_upside_down) {
next_state = UGV_State::STATE_FLIPPING;
break;
}
if (inputs_.gps.fix_quality == io::GPS_FIX_INVALID) {
next_state = UGV_State::STATE_AQUIRING;
break;
}
LatLong current_pos = {inputs_.gps.latitude, inputs_.gps.longitude};
float tgt_bearing = current_pos.bearing_toward(target_);
angle_controller_.Enable();
angle_controller_.Setpoint(tgt_bearing);
if (fabs(angle_controller_.Error()) <= 5.0) {
next_state = UGV_State::STATE_DRIVING;
}
break;
}
case UGV_State::STATE_DRIVING: {
if (is_upside_down) {
next_state = UGV_State::STATE_FLIPPING;
break;
}
if (inputs_.gps.fix_quality == io::GPS_FIX_INVALID) {
next_state = UGV_State::STATE_AQUIRING;
break;
}
LatLong current_pos = {inputs_.gps.latitude, inputs_.gps.longitude};
float tgt_dist = current_pos.distance_to(target_);
if (tgt_dist <= conf_.min_target_dist()) {
ESP_LOGI(TAG, "Finished driving to target");
next_state = UGV_State::STATE_FINISHED;
break;
}
float tgt_bearing = current_pos.bearing_toward(target_);
angle_controller_.Enable();
angle_controller_.Setpoint(tgt_bearing);
break;
}
case UGV_State::STATE_TEST:
#ifdef BASIC_TEST
outputs.left_motor = sinf(time_s * PI);
outputs.right_motor = cosf(time_s * PI);
#else
angle_controller_.Enable();
angle_controller_.Setpoint(90.0);
#endif
break;
case UGV_State::STATE_DRIVE_HEADING:
angle_controller_.Enable();
angle_controller_.Setpoint(comms->drive_heading.heading());
drive_power = comms->drive_heading.power();
break;
}
if (angle_controller_.Enabled()) {
float angle_pwr = angle_controller_.Update();
outputs_.left_motor = drive_power - angle_pwr;
outputs_.right_motor = drive_power + angle_pwr;
}
io->WriteOutputs(outputs_);
comms->Lock();
comms->status.set_state(next_state);
comms->Unlock();
}
};
extern "C" void OnTimeout(void *arg) {
State *state = (State *)arg;
state->OnTick();
}
State *state;
void Setup(void) {
ESP_LOGI(TAG, "Starting UAS UGV");
state = new State();
state->Init();
ESP_LOGI(TAG, "Setup finished");
}
} // namespace ugv
extern "C" void app_main() { ugv::Setup(); }