You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

383 lines
10 KiB

#include <esp_log.h>
#include <esp_timer.h>
#include "MadgwickAHRS.h"
#include "i2c_mutex.h"
#include "ugv_comms.hh"
#include "ugv_display.hh"
#include "ugv_io.hh"
#include <math.h>
namespace ugv {
using ugv::comms::CommsClass;
using ugv::comms::messages::UGV_State;
using ugv::io::IOClass;
static const char *TAG = "ugv_main";
extern "C" {
SemaphoreHandle_t i2c_mutex;
}
constexpr uint64_t LOOP_PERIOD_US = 1e6 / 100;
constexpr float LOOP_PERIOD_S = 1000000.f / static_cast<float>(LOOP_PERIOD_US);
static const float PI =
3.1415926535897932384626433832795028841971693993751058209749445923078164062;
static const float RAD_PER_DEG = PI / 180.f;
// Radius of earth in meters
static const float EARTH_RAD = 6372795.f;
static const float DRIVE_POWER = 0.5;
static const float ANGLE_P = 0.05;
static const float ANGLE_I = 0.00;
static const float ANGLE_D = -0.05;
static const float MAX_ANGLE_POWER = 0.5;
static const float MIN_DIST = 10.0;
extern "C" void OnTimeout(void *arg);
void UpdateLocationFromGPS(comms::messages::Location &location,
const io::GpsData & gps_data) {
location.set_fix_quality(gps_data.fix_quality);
location.set_latitude(gps_data.latitude);
location.set_longitude(gps_data.longitude);
location.set_altitude(gps_data.altitude);
}
struct LatLong {
public:
float latitude;
float longitude;
inline LatLong(double latitude_, double longitude_)
: latitude(latitude_), longitude(longitude_) {}
/**
* Return distance from this LatLong to target, in meters
*/
float distance_to(const LatLong &target) const {
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float long1 = longitude * RAD_PER_DEG;
float long2 = target.longitude * RAD_PER_DEG;
float clat1 = cosf(lat1);
float clat2 = cosf(lat2);
float a = powf(sinf((long2 - long1) / 2.f), 2.f) * clat1 * clat2 +
powf(sinf((lat2 - lat1) / 2.f), 2.f);
float d_over_r = 2 * atan2f(sqrtf(a), sqrtf(1 - a));
return d_over_r * EARTH_RAD;
}
float bearing_toward(const LatLong &target) const {
float dlong = (target.longitude - longitude) * RAD_PER_DEG;
float sdlong = sinf(dlong);
float cdlong = cosf(dlong);
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float slat1 = sinf(lat1);
float clat1 = cosf(lat1);
float slat2 = sinf(lat2);
float clat2 = cosf(lat2);
float num = sdlong * clat2;
float denom = (clat1 * slat2) - (slat1 * clat2 * cdlong);
float course = atan2f(num, denom);
if (course < 0.0) {
course += 2 * PI;
}
return course / RAD_PER_DEG;
}
};
class PIDController {
public:
explicit PIDController(float dt, float kp, float ki = 0., float kd = 0.);
void MaxOutput(float max_output) { max_output_ = max_output; }
float MaxOutput() const { return max_output_; }
void Setpoint(float setpoint) { setpoint_ = setpoint; }
float Setpoint() const { return setpoint_; }
void Input(float input) { input_ = input; }
float Input() const { return input_; };
float Error() const {
float error = setpoint_ - input_;
// TODO: have this be configurable
while (error < 180.f) error += 360.f;
while (error > 180.f) error -= 360.f;
return error;
}
float Output() const { return output_; };
float Update();
float Update(float input);
float Update(float input, float setpoint);
void Reset();
void Enable(bool enable = true) { enabled_ = enable; }
void Disable() { Enable(false); }
bool Enabled() const { return enabled_; }
private:
static float clamp_mag(float x, float mag);
float dt_;
float kp_;
float ki_;
float kd_;
float max_output_;
bool enabled_;
float setpoint_;
float input_;
float output_;
float integral_;
float last_error_;
};
float PIDController::clamp_mag(float x, float max_mag) {
if (x > max_mag)
return max_mag;
else if (x < -max_mag)
return -max_mag;
else
return x;
}
PIDController::PIDController(float dt, float kp, float ki, float kd)
: dt_(dt),
kp_(kp),
ki_(ki),
kd_(kd),
max_output_(INFINITY),
enabled_(false),
setpoint_(0),
input_(0),
output_(0),
integral_(0),
last_error_(0) {}
void PIDController::Reset() {
enabled_ = false;
setpoint_ = 0.;
input_ = 0.;
output_ = 0.;
integral_ = 0.;
last_error_ = NAN;
}
float PIDController::Update() {
output_ = 0.;
if (!enabled_) {
return output_;
}
float error = Error();
integral_ += error * dt_;
output_ += kp_ * error;
output_ += ki_ * integral_;
if (!isnan(last_error_)) {
output_ += kd_ * (error - last_error_);
}
output_ = clamp_mag(output_, max_output_);
last_error_ = error;
return output_;
}
float PIDController::Update(float input) {
Input(input);
return Update();
}
float PIDController::Update(float input, float setpoint) {
Setpoint(setpoint);
return Update(input);
}
struct State {
public:
CommsClass * comms;
IOClass * io;
DisplayClass * display;
esp_timer_handle_t timer_handle;
io::Inputs inputs;
io::Outputs outputs;
int64_t last_print;
Madgwick ahrs_;
LatLong target;
PIDController angle_controller_;
State()
: target{34.069022, -118.443067},
angle_controller_(LOOP_PERIOD_S, ANGLE_P) {
angle_controller_.MaxOutput(MAX_ANGLE_POWER);
comms = new CommsClass();
io = new IOClass();
display = new DisplayClass(comms);
}
void Init() {
esp_timer_init();
i2c_mutex = xSemaphoreCreateMutex();
ahrs_.begin(LOOP_PERIOD_S); // rough sample frequency
io->Init();
comms->Init();
display->Init();
esp_timer_create_args_t timer_args;
timer_args.callback = OnTimeout;
timer_args.arg = this;
timer_args.dispatch_method = ESP_TIMER_TASK;
timer_args.name = "ugv_main_loop";
esp_timer_create(&timer_args, &this->timer_handle);
esp_timer_start_periodic(timer_handle, LOOP_PERIOD_US);
last_print = 0;
}
void OnTick() {
ESP_LOGV(TAG, "OnTick");
int64_t time_us = esp_timer_get_time();
float time_s = ((float)time_us) / 1e6;
io->ReadInputs(inputs);
{
io::Vec3f &g = inputs.mpu.gyro_rate, &a = inputs.mpu.accel,
&m = inputs.mpu.mag;
ahrs_.update(g.x, g.y, g.z, a.x, a.y, a.z, m.x, m.y, m.z);
}
if (time_us >= last_print + 500 * 1000) { // 1s
ESP_LOGD(TAG,
"inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)",
inputs.mpu.accel.x, inputs.mpu.accel.y, inputs.mpu.accel.z,
inputs.mpu.gyro_rate.x, inputs.mpu.gyro_rate.y,
inputs.mpu.gyro_rate.z, inputs.mpu.mag.x, inputs.mpu.mag.y,
inputs.mpu.mag.z);
ESP_LOGD(TAG, "ahrs: yaw=%f, pitch=%f, roll=%f", ahrs_.getYaw(),
ahrs_.getPitch(), ahrs_.getRoll());
last_print = time_us;
}
comms->Lock();
UpdateLocationFromGPS(comms->location, inputs.gps);
comms->yaw_angle = ahrs_.getYaw();
UGV_State ugv_state = comms->ugv_state;
comms->Unlock();
UGV_State next_state = ugv_state;
angle_controller_.Input(ahrs_.getYaw());
float drive_power = 0.;
outputs.left_motor = 0.0;
outputs.right_motor = 0.0;
switch (ugv_state) {
default:
ESP_LOGW(TAG, "unhandled state: %d", ugv_state);
// fall through
case UGV_State::STATE_IDLE:
case UGV_State::STATE_FINISHED: angle_controller_.Disable(); break;
case UGV_State::STATE_AQUIRING: {
angle_controller_.Disable();
TickType_t current_tick = xTaskGetTickCount();
TickType_t ticks_since_gps = current_tick - inputs.gps.last_update;
bool not_old = ticks_since_gps <= pdMS_TO_TICKS(2000);
bool not_invalid = inputs.gps.fix_quality != io::GPS_FIX_INVALID;
if (not_old && not_invalid) {
next_state = UGV_State::STATE_TURNING;
}
break;
}
case UGV_State::STATE_FLIPPING: {
angle_controller_.Disable();
break;
}
case UGV_State::STATE_TURNING: {
if (inputs.gps.fix_quality == io::GPS_FIX_INVALID) {
next_state = UGV_State::STATE_AQUIRING;
break;
}
LatLong current_pos = {inputs.gps.latitude, inputs.gps.longitude};
float tgt_bearing = current_pos.bearing_toward(target);
angle_controller_.Enable();
angle_controller_.Setpoint(tgt_bearing);
if (fabs(angle_controller_.Error()) <= 5.0) {
next_state = UGV_State::STATE_DRIVING;
}
break;
}
case UGV_State::STATE_DRIVING: {
if (inputs.gps.fix_quality == io::GPS_FIX_INVALID) {
next_state = UGV_State::STATE_AQUIRING;
break;
}
LatLong current_pos = {inputs.gps.latitude, inputs.gps.longitude};
float tgt_dist = current_pos.distance_to(target);
if (tgt_dist <= MIN_DIST) {
ESP_LOGI(TAG, "Finished driving to target");
next_state = UGV_State::STATE_FINISHED;
break;
}
float tgt_bearing = current_pos.bearing_toward(target);
angle_controller_.Enable();
angle_controller_.Setpoint(tgt_bearing);
break;
}
case UGV_State::STATE_TEST:
#ifdef BASIC_TEST
outputs.left_motor = sinf(time_s * PI);
outputs.right_motor = cosf(time_s * PI);
#else
angle_controller_.Enable();
angle_controller_.Setpoint(90.0);
#endif
break;
case UGV_State::STATE_DRIVE_HEADING:
angle_controller_.Enable();
angle_controller_.Setpoint(comms->drive_heading.heading());
drive_power = comms->drive_heading.power();
break;
}
if (angle_controller_.Enabled()) {
float angle_pwr = angle_controller_.Update();
outputs.left_motor = drive_power + angle_pwr;
outputs.right_motor = drive_power - angle_pwr;
}
io->WriteOutputs(outputs);
comms->Lock();
comms->ugv_state = next_state;
comms->Unlock();
}
};
extern "C" void OnTimeout(void *arg) {
State *state = (State *)arg;
state->OnTick();
}
State *state;
void Setup(void) {
ESP_LOGI(TAG, "Starting UAS UGV");
state = new State();
state->Init();
ESP_LOGI(TAG, "Setup finished");
}
} // namespace ugv
extern "C" void app_main() { ugv::Setup(); }