You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

222 lines
6.6 KiB

#include <esp_log.h>
#include <esp_timer.h>
#include "MadgwickAHRS.h"
#include "i2c_mutex.h"
#include "ugv_comms.hh"
#include "ugv_display.hh"
#include "ugv_io.hh"
#include <math.h>
namespace ugv {
using ugv::comms::CommsClass;
using ugv::comms::messages::UGV_State;
using ugv::io::IOClass;
static const char *TAG = "ugv_main";
extern "C" {
SemaphoreHandle_t i2c_mutex;
}
constexpr uint64_t LOOP_PERIOD_US = 1e6 / 100;
static const float PI =
3.1415926535897932384626433832795028841971693993751058209749445923078164062;
extern "C" void OnTimeout(void *arg);
void UpdateLocationFromGPS(comms::messages::Location &location,
const io::GpsData & gps_data) {
location.set_fix_quality(gps_data.fix_quality);
location.set_latitude(gps_data.latitude);
location.set_longitude(gps_data.longitude);
location.set_altitude(gps_data.altitude);
}
static const float RAD_PER_DEG = PI / 180.f;
// Radius of earth in meters
static const float EARTH_RAD = 6372795.f;
static const float DRIVE_POWER = 0.5;
static const float ANGLE_P = 0.02;
static const float MIN_DIST = 10.0;
struct LatLong {
public:
float latitude;
float longitude;
inline LatLong(double latitude_, double longitude_)
: latitude(latitude_), longitude(longitude_) {}
/**
* Return distance from this LatLong to target, in meters
*/
float distance_to(const LatLong &target) const {
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float long1 = longitude * RAD_PER_DEG;
float long2 = target.longitude * RAD_PER_DEG;
float clat1 = cosf(lat1);
float clat2 = cosf(lat2);
float a = powf(sinf((long2 - long1) / 2.f), 2.f) * clat1 * clat2 +
powf(sinf((lat2 - lat1) / 2.f), 2.f);
float d_over_r = 2 * atan2f(sqrtf(a), sqrtf(1 - a));
return d_over_r * EARTH_RAD;
}
float bearing_toward(const LatLong &target) const {
float dlong = (target.longitude - longitude) * RAD_PER_DEG;
float sdlong = sinf(dlong);
float cdlong = cosf(dlong);
float lat1 = latitude * RAD_PER_DEG;
float lat2 = target.latitude * RAD_PER_DEG;
float slat1 = sinf(lat1);
float clat1 = cosf(lat1);
float slat2 = sinf(lat2);
float clat2 = cosf(lat2);
float num = sdlong * clat2;
float denom = (clat1 * slat2) - (slat1 * clat2 * cdlong);
float course = atan2f(num, denom);
if (course < 0.0) {
course += 2 * PI;
}
return course / RAD_PER_DEG;
}
};
struct State {
public:
CommsClass * comms;
IOClass * io;
DisplayClass * display;
esp_timer_handle_t timer_handle;
io::Inputs inputs;
io::Outputs outputs;
int64_t last_print;
Madgwick ahrs_;
LatLong target;
State() : target{34.069022, -118.443067} {
comms = new CommsClass();
io = new IOClass();
display = new DisplayClass(comms);
}
void Init() {
esp_timer_init();
i2c_mutex = xSemaphoreCreateMutex();
ahrs_.begin(1000000.f /
static_cast<float>(LOOP_PERIOD_US)); // rough sample frequency
comms->Init();
display->Init();
io->Init();
esp_timer_create_args_t timer_args;
timer_args.callback = OnTimeout;
timer_args.arg = this;
timer_args.dispatch_method = ESP_TIMER_TASK;
timer_args.name = "ugv_main_loop";
esp_timer_create(&timer_args, &this->timer_handle);
esp_timer_start_periodic(timer_handle, LOOP_PERIOD_US);
last_print = 0;
}
void OnTick() {
ESP_LOGV(TAG, "OnTick");
int64_t time_us = esp_timer_get_time();
float time_s = ((float)time_us) / 1e6;
io->ReadInputs(inputs);
{
io::Vec3f &g = inputs.mpu.gyro_rate, &a = inputs.mpu.accel,
&m = inputs.mpu.mag;
ahrs_.update(g.x, g.y, g.z, a.x, a.y, a.z, m.x, m.y, m.z);
}
if (time_us >= last_print + 50 * 1000) { // 1s
ESP_LOGD(TAG,
"inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)",
inputs.mpu.accel.x, inputs.mpu.accel.y, inputs.mpu.accel.z,
inputs.mpu.gyro_rate.x, inputs.mpu.gyro_rate.y,
inputs.mpu.gyro_rate.z, inputs.mpu.mag.x, inputs.mpu.mag.y,
inputs.mpu.mag.z);
ESP_LOGD(TAG, "ahrs: yaw=%f, pitch=%f, roll=%f", ahrs_.getYaw(),
ahrs_.getPitch(), ahrs_.getRoll());
last_print = time_us;
}
comms->Lock();
UpdateLocationFromGPS(comms->location, inputs.gps);
UGV_State ugv_state = comms->ugv_state;
comms->Unlock();
switch (ugv_state) {
default:
ESP_LOGW(TAG, "unhandled state: %d", ugv_state);
// fall through
case UGV_State::STATE_IDLE:
case UGV_State::STATE_FINISHED:
outputs.left_motor = 0.0;
outputs.right_motor = 0.0;
break;
case UGV_State::STATE_AQUIRING: {
TickType_t current_tick = xTaskGetTickCount();
TickType_t ticks_since_gps = current_tick - inputs.gps.last_update;
bool not_old = ticks_since_gps <= pdMS_TO_TICKS(2000);
bool not_invalid = inputs.gps.fix_quality != io::GPS_FIX_INVALID;
outputs.left_motor = 0.0;
outputs.right_motor = 0.0;
if (not_old && not_invalid) {
comms->ugv_state = UGV_State::STATE_DRIVING;
}
break;
}
case UGV_State::STATE_DRIVING: {
LatLong current_pos = {inputs.gps.latitude, inputs.gps.longitude};
float tgt_dist = current_pos.distance_to(target);
if (tgt_dist <= MIN_DIST) {
ESP_LOGI(TAG, "Finished driving to target");
comms->ugv_state = UGV_State::STATE_FINISHED;
break;
}
float tgt_bearing = current_pos.bearing_toward(target);
float cur_bearing = ahrs_.getYaw();
float angle_delta = tgt_bearing - cur_bearing;
if (angle_delta < 180.f) angle_delta += 360.f;
if (angle_delta > 180.f) angle_delta -= 360.f;
float angle_pwr = angle_delta * ANGLE_P;
outputs.left_motor = DRIVE_POWER + angle_pwr;
outputs.right_motor = DRIVE_POWER - angle_pwr;
break;
}
case UGV_State::STATE_TEST:
outputs.left_motor = sinf(time_s * PI);
outputs.right_motor = cosf(time_s * PI);
break;
}
io->WriteOutputs(outputs);
}
};
extern "C" void OnTimeout(void *arg) {
State *state = (State *)arg;
state->OnTick();
}
State *state;
void Setup(void) {
ESP_LOGI(TAG, "Starting UAS UGV");
state = new State();
state->Init();
ESP_LOGI(TAG, "Setup finished");
}
} // namespace ugv
extern "C" void app_main() { ugv::Setup(); }