cargo fmt
This commit is contained in:
parent
a6c4906773
commit
3abe5c6573
@ -1,8 +1,8 @@
|
||||
use std::cell::RefCell;
|
||||
use std::rc::Rc;
|
||||
|
||||
use crate::math::eqn::Eqns;
|
||||
use crate::math::{Point2, Region, Region1, Region2, Scalar};
|
||||
use crate::math::eqn::{Eqns};
|
||||
use std::fmt;
|
||||
|
||||
type EntityId = i64;
|
||||
@ -14,7 +14,9 @@ pub struct Constrainable<T: Clone, TRegion: Region<T>> {
|
||||
constraints: TRegion,
|
||||
}
|
||||
|
||||
impl<T: Clone + fmt::Display, TRegion: Region<T> + fmt::Display> fmt::Display for Constrainable<T, TRegion> {
|
||||
impl<T: Clone + fmt::Display, TRegion: Region<T> + fmt::Display> fmt::Display
|
||||
for Constrainable<T, TRegion>
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{ {} ∈ {} }}", self.value, self.constraints)
|
||||
}
|
||||
@ -22,7 +24,11 @@ impl<T: Clone + fmt::Display, TRegion: Region<T> + fmt::Display> fmt::Display fo
|
||||
|
||||
impl<T: Clone, TRegion: Region<T> + Clone> Constrainable<T, TRegion> {
|
||||
pub fn new(value: T, constraints: TRegion) -> Self {
|
||||
Self { id: 0, value, constraints }
|
||||
Self {
|
||||
id: 0,
|
||||
value,
|
||||
constraints,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_full(value: T) -> Self {
|
||||
|
21
src/main.rs
21
src/main.rs
@ -18,7 +18,7 @@ mod relation;
|
||||
|
||||
fn main() {
|
||||
use entity::{CPoint, PointRef};
|
||||
use math::{Point2, Expr, Region2, Rot2, Eqn, Eqns};
|
||||
use math::{Eqn, Eqns, Expr, Point2, Region2, Rot2};
|
||||
use relation::{Relation, ResolveResult};
|
||||
|
||||
env_logger::init();
|
||||
@ -30,14 +30,21 @@ fn main() {
|
||||
// let u2 = eqn::Expr::from(1.);
|
||||
let origin = CPoint::new_single(Point2::new((0.).into(), (0.).into())).into_ref();
|
||||
// let p1 = Point::new_ref(Var::new_full(Point2::new((1.).into(), (1.).into())));
|
||||
let p1 = CPoint::new(Point2::new(0.,0.), Region2::Singleton(Point2::new((u1).into(), (u2).into()))).into_ref();
|
||||
let p1 = CPoint::new(
|
||||
Point2::new(0., 0.),
|
||||
Region2::Singleton(Point2::new((u1).into(), (u2).into())),
|
||||
)
|
||||
.into_ref();
|
||||
let p2 = CPoint::new_full(Point2::new((4.).into(), (4.).into())).into_ref();
|
||||
let p3 = CPoint::new_full(Point2::new((2.).into(), (2.).into())).into_ref();
|
||||
let mut points: Vec<PointRef> = vec![origin.clone(), p1.clone(), p2.clone(), p3.clone()];
|
||||
let print_points = |points: &Vec<PointRef>| {
|
||||
println!(
|
||||
"origin: {}\np1: {}\np2: {}\np3: {}",
|
||||
points[0].borrow(), points[1].borrow(), points[2].borrow(), points[3].borrow(),
|
||||
points[0].borrow(),
|
||||
points[1].borrow(),
|
||||
points[2].borrow(),
|
||||
points[3].borrow(),
|
||||
);
|
||||
};
|
||||
print_points(&points);
|
||||
@ -49,8 +56,12 @@ fn main() {
|
||||
let c3 = relation::PointAngle::new_horizontal(p2.clone(), p3.clone());
|
||||
let c2 = relation::AlignedDistance::new_vertical(p1.clone(), p2.clone(), 12.);
|
||||
let c5 = relation::PointAngle::new(p1.clone(), p3.clone(), Rot2::from_angle_deg(0.572938698));
|
||||
let mut relations: Vec<Box<dyn Relation>> =
|
||||
vec![/*Box::new(c1),*/ Box::new(c2), Box::new(c3), Box::new(c4), Box::new(c5)];
|
||||
let mut relations: Vec<Box<dyn Relation>> = vec![
|
||||
/*Box::new(c1),*/ Box::new(c2),
|
||||
Box::new(c3),
|
||||
Box::new(c4),
|
||||
Box::new(c5),
|
||||
];
|
||||
let mut constrained: Vec<Box<dyn Relation>> = Vec::new();
|
||||
let mut any_underconstrained = true;
|
||||
let mut any_constrained = true;
|
||||
|
@ -1,8 +1,8 @@
|
||||
use std::fmt;
|
||||
|
||||
use super::Scalar;
|
||||
use super::expr::Expr;
|
||||
use super::unknown::*;
|
||||
use super::Scalar;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct Eqn(pub Expr, pub Expr);
|
||||
|
@ -1,9 +1,9 @@
|
||||
use std::collections::BTreeMap;
|
||||
use std::fmt;
|
||||
|
||||
use super::Scalar;
|
||||
use super::eqn::Eqns;
|
||||
use super::unknown::{Unknown, Unknowns, UnknownSet};
|
||||
use super::unknown::{Unknown, UnknownSet, Unknowns};
|
||||
use super::Scalar;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub enum Expr {
|
||||
@ -127,11 +127,11 @@ fn product_fold(l: Expr, r: Expr) -> Expr {
|
||||
(Product(mut ls), Product(mut rs)) => {
|
||||
ls.append(&mut rs);
|
||||
Product(ls)
|
||||
},
|
||||
}
|
||||
(Product(mut ps), o) | (o, Product(mut ps)) => {
|
||||
ps.push(o);
|
||||
Product(ps)
|
||||
},
|
||||
}
|
||||
(l, r) => Expr::new_product(l, r),
|
||||
}
|
||||
}
|
||||
@ -143,22 +143,20 @@ fn group_product(es: Exprs) -> Exprs {
|
||||
let mut other = Exprs::new();
|
||||
for e in es {
|
||||
let unkns = e.unknowns();
|
||||
match e {
|
||||
match e {
|
||||
Const(c) => match consts {
|
||||
None => consts = Some(c),
|
||||
Some(cs) => consts = Some(c * cs),
|
||||
}
|
||||
e => {
|
||||
other.push(e)
|
||||
}
|
||||
},
|
||||
e => other.push(e),
|
||||
}
|
||||
}
|
||||
if let Some(cs) = consts {
|
||||
if let Some(cs) = consts {
|
||||
if relative_eq!(cs, 0.0) {
|
||||
other.clear();
|
||||
other.push(Const(0.0))
|
||||
} else if relative_ne!(cs, 1.0) {
|
||||
other.push(Const(cs))
|
||||
other.push(Const(cs))
|
||||
}
|
||||
};
|
||||
trace!("group product: {:?} => {:?}", es2, other);
|
||||
@ -457,4 +455,4 @@ impl fmt::Display for Expr {
|
||||
Neg(e) => write!(f, "-({})", e),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
pub mod eqn;
|
||||
pub mod expr;
|
||||
pub mod ops;
|
||||
@ -8,9 +7,9 @@ pub mod vec;
|
||||
|
||||
pub use eqn::{Eqn, Eqns};
|
||||
pub use expr::{Expr, Exprs};
|
||||
pub use unknown::{Unknown, Unknowns, UnknownSet};
|
||||
pub use region::{Region, Region1, Line2, Region2, GenericRegion};
|
||||
pub use ops::*;
|
||||
pub use region::{GenericRegion, Line2, Region, Region1, Region2};
|
||||
pub use unknown::{Unknown, UnknownSet, Unknowns};
|
||||
pub use vec::*;
|
||||
|
||||
pub type Scalar = f64;
|
||||
|
220
src/math/ops.rs
220
src/math/ops.rs
@ -3,195 +3,195 @@ use std::ops;
|
||||
use super::{Expr, Scalar, Unknown};
|
||||
|
||||
impl From<Scalar> for Expr {
|
||||
fn from(c: Scalar) -> Expr {
|
||||
Expr::Const(c)
|
||||
}
|
||||
fn from(c: Scalar) -> Expr {
|
||||
Expr::Const(c)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Unknown> for Expr {
|
||||
fn from(u: Unknown) -> Expr {
|
||||
Expr::Unkn(u)
|
||||
}
|
||||
fn from(u: Unknown) -> Expr {
|
||||
Expr::Unkn(u)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Expr> for Expr {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Expr) -> Expr {
|
||||
Expr::new_sum(self, rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Expr) -> Expr {
|
||||
Expr::new_sum(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Scalar> for Expr {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_sum(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_sum(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Unknown> for Expr {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_sum(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_sum(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Expr> for Expr {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Expr) -> Expr {
|
||||
Expr::new_minus(self, rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Expr) -> Expr {
|
||||
Expr::new_minus(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Scalar> for Expr {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_minus(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_minus(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Unknown> for Expr {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_minus(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_minus(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Expr> for Expr {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Expr) -> Expr {
|
||||
Expr::new_product(self, rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Expr) -> Expr {
|
||||
Expr::new_product(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Scalar> for Expr {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_product(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_product(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Unknown> for Expr {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_product(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_product(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Expr> for Expr {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Expr) -> Expr {
|
||||
Expr::new_div(self, rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Expr) -> Expr {
|
||||
Expr::new_div(self, rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Scalar> for Expr {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_div(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_div(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Unknown> for Expr {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_div(self, rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_div(self, rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Neg for Expr {
|
||||
type Output = Expr;
|
||||
fn neg(self) -> Expr {
|
||||
Expr::new_neg(self)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn neg(self) -> Expr {
|
||||
Expr::new_neg(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Expr> for Unknown {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Expr) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Expr) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Scalar> for Unknown {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Unknown> for Unknown {
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn add(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_sum(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Expr> for Unknown {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Expr) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Expr) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Scalar> for Unknown {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Unknown> for Unknown {
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn sub(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_minus(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Expr> for Unknown {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Expr) -> Expr {
|
||||
Expr::new_product(self.into(), rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Expr) -> Expr {
|
||||
Expr::new_product(self.into(), rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Scalar> for Unknown {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_product(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_product(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Unknown> for Unknown {
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_product(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn mul(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_product(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Expr> for Unknown {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Expr) -> Expr {
|
||||
Expr::new_div(self.into(), rhs)
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Expr) -> Expr {
|
||||
Expr::new_div(self.into(), rhs)
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Scalar> for Unknown {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_div(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Scalar) -> Expr {
|
||||
Expr::new_div(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Div<Unknown> for Unknown {
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_div(self.into(), rhs.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn div(self, rhs: Unknown) -> Expr {
|
||||
Expr::new_div(self.into(), rhs.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Neg for Unknown {
|
||||
type Output = Expr;
|
||||
fn neg(self) -> Expr {
|
||||
Expr::new_neg(self.into())
|
||||
}
|
||||
type Output = Expr;
|
||||
fn neg(self) -> Expr {
|
||||
Expr::new_neg(self.into())
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use std::fmt;
|
||||
|
||||
use super::{eqn, Value, Scalar, Expr, Point2, Rot2};
|
||||
use super::{eqn, Expr, Point2, Rot2, Scalar, Value};
|
||||
|
||||
// pub type Vec2 = nalgebra::Vector2<Value>;
|
||||
// pub type Point2 = nalgebra::Point2<Value>;
|
||||
@ -39,7 +39,7 @@ impl fmt::Display for Region1 {
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Range(l, u) => write!(f, "[ {}, {} ]", l, u),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ")
|
||||
Full => write!(f, "ℝ"),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -119,23 +119,20 @@ impl Region<Scalar> for Region1 {
|
||||
},
|
||||
_ => None,
|
||||
},
|
||||
Intersection(r1, r2) => {
|
||||
unimplemented!()
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
let distance = |a: Scalar, b: Scalar| (a - b).abs();
|
||||
match (r1.nearest(s), r2.nearest(s)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(*s, n1) <= distance(*s, n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
Intersection(r1, r2) => unimplemented!(), /*Union(r1, r2) => {
|
||||
let distance = |a: Scalar, b: Scalar| (a - b).abs();
|
||||
match (r1.nearest(s), r2.nearest(s)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(*s, n1) <= distance(*s, n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -151,7 +148,11 @@ pub struct Line2 {
|
||||
|
||||
impl fmt::Display for Line2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{ <x, y> = {} + {} * {} }}", self.start, self.dir, self.extent)
|
||||
write!(
|
||||
f,
|
||||
"{{ <x, y> = {} + {} * {} }}",
|
||||
self.start, self.dir, self.extent
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@ -170,9 +171,13 @@ impl Line2 {
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn with_extent(self, new_extent: Region1) -> Line2 {
|
||||
Line2 { start: self.start, dir: self.dir, extent: new_extent }
|
||||
Line2 {
|
||||
start: self.start,
|
||||
dir: self.dir,
|
||||
extent: new_extent,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nearest(&self, p: &Point2<Value>) -> Point2<Value> {
|
||||
@ -182,7 +187,7 @@ impl Line2 {
|
||||
match self.intersect(&perp) {
|
||||
Region2::Singleton(np) => np,
|
||||
Region2::Line(l) => l.evaluate_extent().expect("Line2::nearest not found"),
|
||||
_ => panic!("Line2::nearest not found!")
|
||||
_ => panic!("Line2::nearest not found!"),
|
||||
}
|
||||
}
|
||||
|
||||
@ -208,7 +213,8 @@ impl Line2 {
|
||||
b.dir.clone(),
|
||||
);
|
||||
let (a_c, a_s, b_c, b_s) = (a_v.cos(), a_v.sin(), b_v.cos(), b_v.sin());
|
||||
let t_b = (a_0.x.clone() * a_s.clone() - a_0.y.clone() * a_c.clone()
|
||||
let t_b = (a_0.x.clone() * a_s.clone()
|
||||
- a_0.y.clone() * a_c.clone()
|
||||
- b_0.x.clone() * a_s.clone()
|
||||
+ b_0.y.clone() * a_c.clone())
|
||||
/ (a_s.clone() * b_c.clone() - a_c.clone() * b_s.clone());
|
||||
@ -225,7 +231,11 @@ impl Line2 {
|
||||
dir: self.dir,
|
||||
extent: self.extent.simplify(),
|
||||
};
|
||||
trace!("line {}: simplify evaluate extent: {:?}", new_l, new_l.evaluate_extent());
|
||||
trace!(
|
||||
"line {}: simplify evaluate extent: {:?}",
|
||||
new_l,
|
||||
new_l.evaluate_extent()
|
||||
);
|
||||
if let Some(p) = new_l.evaluate_extent() {
|
||||
return Region2::Singleton(p.simplify());
|
||||
}
|
||||
@ -261,7 +271,7 @@ impl fmt::Display for Region2 {
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Line(l) => l.fmt(f),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ²")
|
||||
Full => write!(f, "ℝ²"),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -328,12 +338,11 @@ impl Region<Point2<Scalar>> for Region2 {
|
||||
(Const(cx), Const(cy)) => Some(Point2::new(cx, cy)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
Intersection(r1, r2) => {
|
||||
None
|
||||
// r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
} /*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
@ -357,7 +366,8 @@ impl Region<Point2<Value>> for Region2 {
|
||||
}
|
||||
|
||||
fn contains(&self, p: &Point2<Value>) -> Option<bool> {
|
||||
self.nearest(p).map(|n| n.simplify() == p.clone().simplify())
|
||||
self.nearest(p)
|
||||
.map(|n| n.simplify() == p.clone().simplify())
|
||||
}
|
||||
|
||||
fn nearest(&self, p: &Point2<Value>) -> Option<Point2<Value>> {
|
||||
@ -367,23 +377,20 @@ impl Region<Point2<Value>> for Region2 {
|
||||
Full => Some(p.clone()),
|
||||
Singleton(n) => Some(n.clone()),
|
||||
Line(line) => Some(line.nearest(p)),
|
||||
Intersection(r1, r2) => {
|
||||
r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
Intersection(r1, r2) => r1.clone().intersect((**r2).clone()).nearest(p), /*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -419,9 +426,7 @@ impl Region2 {
|
||||
Region2::intersection(Singleton(n), o)
|
||||
}
|
||||
}
|
||||
(Intersection(r1, r2), o) | (o, Intersection(r1, r2)) => {
|
||||
r1.intersect(*r2).intersect(o)
|
||||
}
|
||||
(Intersection(r1, r2), o) | (o, Intersection(r1, r2)) => r1.intersect(*r2).intersect(o),
|
||||
(Line(l1), Line(l2)) => l1.intersect(&l2).simplify(),
|
||||
/*(Union(un1, un2), o) | (o, Union(un1, un2)) => {
|
||||
Self::union(un1.intersect(o), un2.intersect(o))
|
||||
@ -429,4 +434,4 @@ impl Region2 {
|
||||
(r1, r2) => Intersection(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use std::collections::BTreeSet;
|
||||
use std::iter::FromIterator;
|
||||
use std::fmt;
|
||||
use std::iter::FromIterator;
|
||||
|
||||
use super::Scalar;
|
||||
|
||||
@ -44,4 +44,4 @@ impl fmt::Display for Unknown {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "u{}", self.0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
381
src/math/vec.rs
381
src/math/vec.rs
@ -1,300 +1,303 @@
|
||||
use super::{Scalar, Value};
|
||||
use super::eqn::Eqns;
|
||||
use super::{Scalar, Value};
|
||||
|
||||
use std::ops;
|
||||
|
||||
#[derive(Clone, PartialEq, Debug)]
|
||||
pub struct Vec2<T> {
|
||||
pub x: T,
|
||||
pub y: T,
|
||||
pub x: T,
|
||||
pub y: T,
|
||||
}
|
||||
|
||||
impl<T> Vec2<T> {
|
||||
pub fn new(x: T, y: T) -> Self {
|
||||
Self { x, y }
|
||||
}
|
||||
pub fn new(x: T, y: T) -> Self {
|
||||
Self { x, y }
|
||||
}
|
||||
}
|
||||
|
||||
impl Vec2<Scalar> {
|
||||
pub fn normal2(self) -> Scalar {
|
||||
self.x * self.x + self.y * self.y
|
||||
}
|
||||
pub fn normal2(self) -> Scalar {
|
||||
self.x * self.x + self.y * self.y
|
||||
}
|
||||
|
||||
pub fn normal(self) -> Scalar {
|
||||
self.normal2().sqrt()
|
||||
}
|
||||
pub fn normal(self) -> Scalar {
|
||||
self.normal2().sqrt()
|
||||
}
|
||||
|
||||
pub fn normalize(self) -> Vec2<Scalar> {
|
||||
self.clone() / self.normal()
|
||||
}
|
||||
pub fn normalize(self) -> Vec2<Scalar> {
|
||||
self.clone() / self.normal()
|
||||
}
|
||||
}
|
||||
|
||||
impl Vec2<Value> {
|
||||
pub fn simplify(self) -> Self {
|
||||
Self {
|
||||
x: self.x.simplify(),
|
||||
y: self.y.simplify(),
|
||||
pub fn simplify(self) -> Self {
|
||||
Self {
|
||||
x: self.x.simplify(),
|
||||
y: self.y.simplify(),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Add<U>, U> ops::Add<Vec2<U>> for Vec2<T> {
|
||||
type Output = Vec2<T::Output>;
|
||||
fn add(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x + rhs.x,
|
||||
y: self.y + rhs.y,
|
||||
type Output = Vec2<T::Output>;
|
||||
fn add(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x + rhs.x,
|
||||
y: self.y + rhs.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Sub<U>, U> ops::Sub<Vec2<U>> for Vec2<T> {
|
||||
type Output = Vec2<T::Output>;
|
||||
fn sub(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
type Output = Vec2<T::Output>;
|
||||
fn sub(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Mul<U>, U: Clone> ops::Mul<U> for Vec2<T> {
|
||||
type Output = Vec2<T::Output>;
|
||||
fn mul(self, rhs: U) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x * rhs.clone(),
|
||||
y: self.y * rhs,
|
||||
type Output = Vec2<T::Output>;
|
||||
fn mul(self, rhs: U) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x * rhs.clone(),
|
||||
y: self.y * rhs,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Div<U>, U: Clone> ops::Div<U> for Vec2<T> {
|
||||
type Output = Vec2<T::Output>;
|
||||
fn div(self, rhs: U) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x / rhs.clone(),
|
||||
y: self.y / rhs,
|
||||
type Output = Vec2<T::Output>;
|
||||
fn div(self, rhs: U) -> Self::Output {
|
||||
Self::Output {
|
||||
x: self.x / rhs.clone(),
|
||||
y: self.y / rhs,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Debug)]
|
||||
pub struct Point2<T> {
|
||||
pub x: T,
|
||||
pub y: T,
|
||||
pub x: T,
|
||||
pub y: T,
|
||||
}
|
||||
|
||||
impl<T> Point2<T> {
|
||||
pub fn new(x: T, y: T) -> Point2<T> {
|
||||
Point2 { x, y }
|
||||
}
|
||||
pub fn new(x: T, y: T) -> Point2<T> {
|
||||
Point2 { x, y }
|
||||
}
|
||||
}
|
||||
|
||||
impl Point2<Value> {
|
||||
pub fn simplify(self) -> Self {
|
||||
Self {
|
||||
x: self.x.distribute().simplify(),
|
||||
y: self.y.distribute().simplify(),
|
||||
pub fn simplify(self) -> Self {
|
||||
Self {
|
||||
x: self.x.distribute().simplify(),
|
||||
y: self.y.distribute().simplify(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate_with(self, eqns: &Eqns) -> Self {
|
||||
Self {
|
||||
x: self.x.evaluate_with(eqns),
|
||||
y: self.y.evaluate_with(eqns),
|
||||
pub fn evaluate_with(self, eqns: &Eqns) -> Self {
|
||||
Self {
|
||||
x: self.x.evaluate_with(eqns),
|
||||
y: self.y.evaluate_with(eqns),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Point2<Scalar>> for Point2<Value> {
|
||||
fn from(sp: Point2<Scalar>) -> Self {
|
||||
Self { x: sp.x.into(), y: sp.y.into() }
|
||||
}
|
||||
fn from(sp: Point2<Scalar>) -> Self {
|
||||
Self {
|
||||
x: sp.x.into(),
|
||||
y: sp.y.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Add<U>, U> ops::Add<Vec2<U>> for Point2<T> {
|
||||
type Output = Point2<T::Output>;
|
||||
fn add(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Point2 {
|
||||
x: self.x + rhs.x,
|
||||
y: self.y + rhs.y,
|
||||
type Output = Point2<T::Output>;
|
||||
fn add(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Point2 {
|
||||
x: self.x + rhs.x,
|
||||
y: self.y + rhs.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Sub<U>, U> ops::Sub<Vec2<U>> for Point2<T> {
|
||||
type Output = Point2<T::Output>;
|
||||
fn sub(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Point2 {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
type Output = Point2<T::Output>;
|
||||
fn sub(self, rhs: Vec2<U>) -> Self::Output {
|
||||
Point2 {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ops::Sub<U>, U> ops::Sub<Point2<U>> for Point2<T> {
|
||||
type Output = Vec2<T::Output>;
|
||||
fn sub(self, rhs: Point2<U>) -> Self::Output {
|
||||
Vec2 {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
type Output = Vec2<T::Output>;
|
||||
fn sub(self, rhs: Point2<U>) -> Self::Output {
|
||||
Vec2 {
|
||||
x: self.x - rhs.x,
|
||||
y: self.y - rhs.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
use std::fmt;
|
||||
|
||||
impl<T: fmt::Display> fmt::Display for Point2<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "<{}, {}>", self.x, self.y)
|
||||
}
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "<{}, {}>", self.x, self.y)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Debug)]
|
||||
pub struct Rot2 {
|
||||
cos: Scalar,
|
||||
sin: Scalar,
|
||||
cos: Scalar,
|
||||
sin: Scalar,
|
||||
}
|
||||
|
||||
impl fmt::Display for Rot2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "<{}, {}>", self.cos, self.sin)
|
||||
}
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "<{}, {}>", self.cos, self.sin)
|
||||
}
|
||||
}
|
||||
|
||||
impl Rot2 {
|
||||
pub fn from_cos_sin_unchecked(cos: Scalar, sin: Scalar) -> Self {
|
||||
Self { cos, sin }
|
||||
}
|
||||
|
||||
pub fn up() -> Self {
|
||||
Self { cos: 0., sin: 1. }
|
||||
}
|
||||
|
||||
pub fn right() -> Self {
|
||||
Self { cos: 1., sin: 0. }
|
||||
}
|
||||
|
||||
pub fn from_cos_sin(cos: Scalar, sin: Scalar) -> Self {
|
||||
Vec2 { x: cos, y: sin }.into()
|
||||
}
|
||||
|
||||
pub fn from_angle(angle: Scalar) -> Self {
|
||||
Self {
|
||||
cos: angle.cos().into(),
|
||||
sin: angle.sin().into(),
|
||||
pub fn from_cos_sin_unchecked(cos: Scalar, sin: Scalar) -> Self {
|
||||
Self { cos, sin }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_angle_deg(angle_deg: Scalar) -> Self {
|
||||
Self::from_angle(angle_deg * std::f64::consts::PI / 180.)
|
||||
}
|
||||
|
||||
pub fn cardinal(index: i64) -> Self {
|
||||
match index % 4 {
|
||||
0 => Rot2 {
|
||||
cos: (1.).into(),
|
||||
sin: (0.).into(),
|
||||
},
|
||||
1 => Rot2 {
|
||||
cos: (0.).into(),
|
||||
sin: (1.).into(),
|
||||
},
|
||||
2 => Rot2 {
|
||||
cos: (-1.).into(),
|
||||
sin: (0.).into(),
|
||||
},
|
||||
3 => Rot2 {
|
||||
cos: (0.).into(),
|
||||
sin: (-1.).into(),
|
||||
},
|
||||
_ => unreachable!(),
|
||||
pub fn up() -> Self {
|
||||
Self { cos: 0., sin: 1. }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn cos(&self) -> Scalar {
|
||||
self.cos
|
||||
}
|
||||
|
||||
pub fn sin(&self) -> Scalar {
|
||||
self.sin
|
||||
}
|
||||
|
||||
pub fn conj(self) -> Self {
|
||||
Self {
|
||||
cos: self.cos,
|
||||
sin: -self.sin,
|
||||
pub fn right() -> Self {
|
||||
Self { cos: 1., sin: 0. }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dot(self, v: Vec2<Value>) -> Value {
|
||||
v.x * self.cos + v.y * self.sin
|
||||
}
|
||||
pub fn from_cos_sin(cos: Scalar, sin: Scalar) -> Self {
|
||||
Vec2 { x: cos, y: sin }.into()
|
||||
}
|
||||
|
||||
pub fn from_angle(angle: Scalar) -> Self {
|
||||
Self {
|
||||
cos: angle.cos().into(),
|
||||
sin: angle.sin().into(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_angle_deg(angle_deg: Scalar) -> Self {
|
||||
Self::from_angle(angle_deg * std::f64::consts::PI / 180.)
|
||||
}
|
||||
|
||||
pub fn cardinal(index: i64) -> Self {
|
||||
match index % 4 {
|
||||
0 => Rot2 {
|
||||
cos: (1.).into(),
|
||||
sin: (0.).into(),
|
||||
},
|
||||
1 => Rot2 {
|
||||
cos: (0.).into(),
|
||||
sin: (1.).into(),
|
||||
},
|
||||
2 => Rot2 {
|
||||
cos: (-1.).into(),
|
||||
sin: (0.).into(),
|
||||
},
|
||||
3 => Rot2 {
|
||||
cos: (0.).into(),
|
||||
sin: (-1.).into(),
|
||||
},
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn cos(&self) -> Scalar {
|
||||
self.cos
|
||||
}
|
||||
|
||||
pub fn sin(&self) -> Scalar {
|
||||
self.sin
|
||||
}
|
||||
|
||||
pub fn conj(self) -> Self {
|
||||
Self {
|
||||
cos: self.cos,
|
||||
sin: -self.sin,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn dot(self, v: Vec2<Value>) -> Value {
|
||||
v.x * self.cos + v.y * self.sin
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Vec2<Scalar>> for Rot2 {
|
||||
fn from(v: Vec2<Scalar>) -> Rot2 {
|
||||
let v = v.normalize();
|
||||
Rot2 { cos: v.x, sin: v.y }
|
||||
}
|
||||
fn from(v: Vec2<Scalar>) -> Rot2 {
|
||||
let v = v.normalize();
|
||||
Rot2 { cos: v.x, sin: v.y }
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Scalar> for Rot2 {
|
||||
type Output = Vec2<Scalar>;
|
||||
fn mul(self, rhs: Scalar) -> Vec2<Scalar> {
|
||||
Vec2 {
|
||||
x: self.cos * rhs,
|
||||
y: self.sin * rhs,
|
||||
type Output = Vec2<Scalar>;
|
||||
fn mul(self, rhs: Scalar) -> Vec2<Scalar> {
|
||||
Vec2 {
|
||||
x: self.cos * rhs,
|
||||
y: self.sin * rhs,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Value> for Rot2 {
|
||||
type Output = Vec2<Value>;
|
||||
fn mul(self, rhs: Value) -> Vec2<Value> {
|
||||
Vec2 {
|
||||
x: rhs.clone() * self.cos,
|
||||
y: rhs * self.sin,
|
||||
type Output = Vec2<Value>;
|
||||
fn mul(self, rhs: Value) -> Vec2<Value> {
|
||||
Vec2 {
|
||||
x: rhs.clone() * self.cos,
|
||||
y: rhs * self.sin,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Add<Rot2> for Rot2 {
|
||||
type Output = Rot2;
|
||||
fn add(self, rhs: Rot2) -> Rot2 {
|
||||
Rot2 {
|
||||
cos: self.cos.clone() * rhs.cos.clone() - self.sin.clone() * rhs.sin.clone(),
|
||||
sin: self.cos * rhs.sin + self.sin * rhs.cos,
|
||||
type Output = Rot2;
|
||||
fn add(self, rhs: Rot2) -> Rot2 {
|
||||
Rot2 {
|
||||
cos: self.cos.clone() * rhs.cos.clone() - self.sin.clone() * rhs.sin.clone(),
|
||||
sin: self.cos * rhs.sin + self.sin * rhs.cos,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Sub<Rot2> for Rot2 {
|
||||
type Output = Rot2;
|
||||
fn sub(self, rhs: Rot2) -> Rot2 {
|
||||
Rot2 {
|
||||
cos: self.cos.clone() * rhs.cos.clone() + self.sin.clone() * rhs.sin.clone(),
|
||||
sin: self.sin * rhs.cos - self.cos * rhs.sin,
|
||||
type Output = Rot2;
|
||||
fn sub(self, rhs: Rot2) -> Rot2 {
|
||||
Rot2 {
|
||||
cos: self.cos.clone() * rhs.cos.clone() + self.sin.clone() * rhs.sin.clone(),
|
||||
sin: self.sin * rhs.cos - self.cos * rhs.sin,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Vec2<Scalar>> for Rot2 {
|
||||
type Output = Vec2<Scalar>;
|
||||
fn mul(self, rhs: Vec2<Scalar>) -> Vec2<Scalar> {
|
||||
Vec2 {
|
||||
x: self.cos * rhs.x - self.sin * rhs.y,
|
||||
y: self.cos * rhs.y + self.sin * rhs.x,
|
||||
type Output = Vec2<Scalar>;
|
||||
fn mul(self, rhs: Vec2<Scalar>) -> Vec2<Scalar> {
|
||||
Vec2 {
|
||||
x: self.cos * rhs.x - self.sin * rhs.y,
|
||||
y: self.cos * rhs.y + self.sin * rhs.x,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ops::Mul<Vec2<Value>> for Rot2 {
|
||||
type Output = Vec2<Value>;
|
||||
fn mul(self, rhs: Vec2<Value>) -> Vec2<Value> {
|
||||
Vec2 {
|
||||
x: rhs.x.clone() * self.cos - rhs.y.clone() * self.sin,
|
||||
y: rhs.y * self.cos + rhs.x * self.sin,
|
||||
type Output = Vec2<Value>;
|
||||
fn mul(self, rhs: Vec2<Value>) -> Vec2<Value> {
|
||||
Vec2 {
|
||||
x: rhs.x.clone() * self.cos - rhs.y.clone() * self.sin,
|
||||
y: rhs.y * self.cos + rhs.x * self.sin,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::entity::{CPoint as PointEntity, PointRef};
|
||||
use crate::math::{Line2, Vec2, Point2, Region1, Region2, Rot2, Scalar, Value, GenericRegion};
|
||||
use crate::math::{GenericRegion, Line2, Point2, Region1, Region2, Rot2, Scalar, Value, Vec2};
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq)]
|
||||
pub enum ResolveResult {
|
||||
@ -31,7 +31,12 @@ pub struct Coincident {
|
||||
impl Relation for Coincident {
|
||||
fn resolve(&self) -> ResolveResult {
|
||||
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
|
||||
let r = { p1.constraints().clone().intersect(p2.constraints().clone()).simplify() };
|
||||
let r = {
|
||||
p1.constraints()
|
||||
.clone()
|
||||
.intersect(p2.constraints().clone())
|
||||
.simplify()
|
||||
};
|
||||
p1.reconstrain(r.clone());
|
||||
p2.reconstrain(r.clone());
|
||||
ResolveResult::from_r2(&r)
|
||||
@ -50,11 +55,19 @@ impl PointAngle {
|
||||
}
|
||||
|
||||
pub fn new_horizontal(p1: PointRef, p2: PointRef) -> Self {
|
||||
Self::new(p1, p2, Rot2::from_cos_sin_unchecked((1.).into(), (0.).into()))
|
||||
Self::new(
|
||||
p1,
|
||||
p2,
|
||||
Rot2::from_cos_sin_unchecked((1.).into(), (0.).into()),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn new_vertical(p1: PointRef, p2: PointRef) -> Self {
|
||||
Self::new(p1, p2, Rot2::from_cos_sin_unchecked((0.).into(), (1.).into()))
|
||||
Self::new(
|
||||
p1,
|
||||
p2,
|
||||
Rot2::from_cos_sin_unchecked((0.).into(), (1.).into()),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@ -64,7 +77,11 @@ impl Relation for PointAngle {
|
||||
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
|
||||
let constrain_line = |p1: &Point2<Value>, p2: &mut PointEntity| {
|
||||
let line = Region2::Line(Line2::new(p1.clone(), self.angle.clone(), Region1::Full));
|
||||
trace!("PointAngle line: {}, p2 constraint: {}", line, p2.constraints());
|
||||
trace!(
|
||||
"PointAngle line: {}, p2 constraint: {}",
|
||||
line,
|
||||
p2.constraints()
|
||||
);
|
||||
let new_constraint = p2.constraints().clone().intersection(line).simplify();
|
||||
trace!("PointAngle new_constraint: {}", new_constraint);
|
||||
p2.reconstrain(new_constraint);
|
||||
@ -78,9 +95,9 @@ impl Relation for PointAngle {
|
||||
let r = self.angle.clone().conj() * (p2.clone() - p1.clone());
|
||||
trace!("angle.cos: {}", r.x);
|
||||
// if relative_eq!(r.y, 0.) {
|
||||
ResolveResult::Constrained
|
||||
ResolveResult::Constrained
|
||||
// } else {
|
||||
// ResolveResult::Overconstrained
|
||||
// ResolveResult::Overconstrained
|
||||
// }
|
||||
}
|
||||
(Singleton(p), _) => constrain_line(p, &mut *p2),
|
||||
@ -123,7 +140,11 @@ impl Relation for AlignedDistance {
|
||||
let constrain_line = |p1: Point2<Value>, p2: &mut PointEntity| {
|
||||
let angle = self.angle + Rot2::up();
|
||||
let line = Region2::Line(Line2::new(p1.clone(), angle, Region1::Full)).simplify();
|
||||
trace!("AlignedDistance line: {}, p2 constraint: {}", line, p2.constraints());
|
||||
trace!(
|
||||
"AlignedDistance line: {}, p2 constraint: {}",
|
||||
line,
|
||||
p2.constraints()
|
||||
);
|
||||
let new_constraint = p2.constraints().clone().intersection(line).simplify();
|
||||
trace!("AlignedDistance new_constraint: {}", new_constraint);
|
||||
p2.reconstrain(new_constraint);
|
||||
@ -136,9 +157,9 @@ impl Relation for AlignedDistance {
|
||||
let r = p2.clone() - p1.clone();
|
||||
let d = self.angle.dot(r);
|
||||
// if relative_eq!(d, self.distance) {
|
||||
ResolveResult::Constrained
|
||||
ResolveResult::Constrained
|
||||
// } else {
|
||||
// ResolveResult::Overconstrained
|
||||
// ResolveResult::Overconstrained
|
||||
// }
|
||||
}
|
||||
(Singleton(pos), _) => constrain_line(pos.clone() + offset, &mut *p2),
|
||||
|
Loading…
x
Reference in New Issue
Block a user