refactor out math stuff
This commit is contained in:
parent
233c8eaad5
commit
a6c4906773
12
src/main.rs
12
src/main.rs
@ -18,14 +18,14 @@ mod relation;
|
||||
|
||||
fn main() {
|
||||
use entity::{CPoint, PointRef};
|
||||
use math::{Point2, eqn, Region2, Rot2};
|
||||
use math::{Point2, Expr, Region2, Rot2, Eqn, Eqns};
|
||||
use relation::{Relation, ResolveResult};
|
||||
|
||||
env_logger::init();
|
||||
|
||||
println!("Hello, world!");
|
||||
let u1 = math::eqn::Unknown(1);
|
||||
let u2 = math::eqn::Unknown(2);
|
||||
let u1 = math::Unknown(1);
|
||||
let u2 = math::Unknown(2);
|
||||
// let u1 = eqn::Expr::from(1.);
|
||||
// let u2 = eqn::Expr::from(1.);
|
||||
let origin = CPoint::new_single(Point2::new((0.).into(), (0.).into())).into_ref();
|
||||
@ -90,9 +90,9 @@ fn main() {
|
||||
} else {
|
||||
println!("All constraints have been solved")
|
||||
}
|
||||
let e1 = eqn::Eqn::new(eqn::Expr::Unkn(u1), eqn::Expr::Const(1.));
|
||||
let e2 = eqn::Eqn::new(eqn::Expr::Unkn(u2), eqn::Expr::Const(1.));
|
||||
let eqns = eqn::Eqns(vec![e1, e2]);
|
||||
let e1 = Eqn::new(Expr::Unkn(u1), Expr::Const(1.));
|
||||
let e2 = Eqn::new(Expr::Unkn(u2), Expr::Const(1.));
|
||||
let eqns = Eqns(vec![e1, e2]);
|
||||
for p in &mut points {
|
||||
p.borrow_mut().resolve_with(&eqns);
|
||||
}
|
||||
|
504
src/math/eqn.rs
504
src/math/eqn.rs
@ -1,507 +1,11 @@
|
||||
use std::collections::{BTreeMap, BTreeSet};
|
||||
use std::fmt;
|
||||
use std::iter::FromIterator;
|
||||
|
||||
use crate::math::Scalar;
|
||||
|
||||
// an unknown variable with an id
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub struct Unknown(pub i64);
|
||||
|
||||
pub type UnknownSet = BTreeSet<Unknown>;
|
||||
|
||||
pub trait Unknowns {
|
||||
fn unknowns(&self) -> UnknownSet;
|
||||
fn has_unknowns(&self) -> bool;
|
||||
fn has_unknown(&self, u: Unknown) -> bool;
|
||||
}
|
||||
|
||||
impl Unknowns for Scalar {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
UnknownSet::new()
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
false
|
||||
}
|
||||
fn has_unknown(&self, _: Unknown) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl Unknowns for Unknown {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
FromIterator::from_iter(Some(*self))
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
true
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
*self == u
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Unknown {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "u{}", self.0)
|
||||
}
|
||||
}
|
||||
use super::Scalar;
|
||||
use super::expr::Expr;
|
||||
use super::unknown::*;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub enum Expr {
|
||||
Unkn(Unknown),
|
||||
Const(Scalar),
|
||||
Sum(Exprs),
|
||||
Neg(Box<Expr>),
|
||||
Product(Exprs),
|
||||
Div(Box<Expr>, Box<Expr>),
|
||||
}
|
||||
|
||||
pub type Exprs = Vec<Expr>;
|
||||
|
||||
impl Unknowns for Exprs {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
self.iter().flat_map(|e: &Expr| e.unknowns()).collect()
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
self.iter().any(|e: &Expr| e.has_unknowns())
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
self.iter().any(|e: &Expr| e.has_unknown(u))
|
||||
}
|
||||
}
|
||||
|
||||
fn write_separated_exprs(es: &Exprs, f: &mut fmt::Formatter, sep: &str) -> fmt::Result {
|
||||
let mut is_first = true;
|
||||
for e in es {
|
||||
if is_first {
|
||||
is_first = false;
|
||||
} else {
|
||||
write!(f, "{}", sep)?
|
||||
}
|
||||
write!(f, "({})", e)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn remove_common_terms(l: &mut Vec<Expr>, r: &mut Vec<Expr>) -> Vec<Expr> {
|
||||
let common: Vec<_> = l.drain_filter(|e| r.contains(e)).collect();
|
||||
common.iter().for_each(|e| {
|
||||
r.remove_item(e);
|
||||
});
|
||||
common
|
||||
}
|
||||
|
||||
fn remove_term(terms: &mut Vec<Expr>, term: &Expr) -> Option<Expr> {
|
||||
terms.remove_item(term)
|
||||
}
|
||||
|
||||
fn sum_fold(l: Expr, r: Expr) -> Expr {
|
||||
use Expr::*;
|
||||
match (l, r) {
|
||||
(Const(lc), Const(rc)) => Const(lc + rc),
|
||||
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 0.) => o,
|
||||
(Product(mut l), Product(mut r)) => {
|
||||
let comm = remove_common_terms(&mut l, &mut r);
|
||||
if comm.is_empty() {
|
||||
Expr::new_sum(Product(l), Product(r))
|
||||
} else {
|
||||
Expr::new_product(Product(comm), Expr::new_sum(Product(l), Product(r)))
|
||||
}
|
||||
}
|
||||
(Product(mut l), r) | (r, Product(mut l)) => {
|
||||
let comm = remove_term(&mut l, &r);
|
||||
match comm {
|
||||
Some(_) => Expr::new_product(r, Expr::new_sum(Product(l), Const(1.))),
|
||||
None => Expr::new_sum(Product(l), r),
|
||||
}
|
||||
}
|
||||
(l, r) => Expr::new_sum(l, r),
|
||||
}
|
||||
}
|
||||
|
||||
fn group_sum(es: Exprs) -> Exprs {
|
||||
use Expr::*;
|
||||
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
|
||||
for e in es {
|
||||
let unkns = e.unknowns();
|
||||
match common.get_mut(&unkns) {
|
||||
None => {
|
||||
match e {
|
||||
Const(c) if relative_eq!(c, 0.) => (),
|
||||
e => {
|
||||
common.insert(unkns, e);
|
||||
}
|
||||
};
|
||||
}
|
||||
Some(existing) => {
|
||||
match existing {
|
||||
Sum(ref mut es) => {
|
||||
// already failed at merging, so just add it to the list
|
||||
es.push(e);
|
||||
}
|
||||
other => {
|
||||
*other = sum_fold(other.clone(), e);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
for c in common.values() {
|
||||
trace!("group sum value: {}", c);
|
||||
}
|
||||
common.into_iter().map(|(_, v)| v).collect()
|
||||
}
|
||||
|
||||
fn product_fold(l: Expr, r: Expr) -> Expr {
|
||||
use Expr::*;
|
||||
match (l, r) {
|
||||
(Const(lc), Const(rc)) => Const(lc * rc),
|
||||
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 1.) => o,
|
||||
(Const(c), _) | (_, Const(c)) if relative_eq!(c, 0.) => Const(0.),
|
||||
(Div(num, den), mul) | (mul, Div(num, den)) => {
|
||||
if mul == *den {
|
||||
*num
|
||||
} else {
|
||||
Expr::Div(Box::new(Expr::Product(vec![*num, mul])), den).simplify()
|
||||
}
|
||||
}
|
||||
(Product(mut ls), Product(mut rs)) => {
|
||||
ls.append(&mut rs);
|
||||
Product(ls)
|
||||
},
|
||||
(Product(mut ps), o) | (o, Product(mut ps)) => {
|
||||
ps.push(o);
|
||||
Product(ps)
|
||||
},
|
||||
(l, r) => Expr::new_product(l, r),
|
||||
}
|
||||
}
|
||||
|
||||
fn group_product(es: Exprs) -> Exprs {
|
||||
use Expr::*;
|
||||
let es2 = es.clone();
|
||||
let mut consts: Option<Scalar> = None;
|
||||
let mut other = Exprs::new();
|
||||
for e in es {
|
||||
let unkns = e.unknowns();
|
||||
match e {
|
||||
Const(c) => match consts {
|
||||
None => consts = Some(c),
|
||||
Some(cs) => consts = Some(c * cs),
|
||||
}
|
||||
e => {
|
||||
other.push(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
if let Some(cs) = consts {
|
||||
if relative_eq!(cs, 0.0) {
|
||||
other.clear();
|
||||
other.push(Const(0.0))
|
||||
} else if relative_ne!(cs, 1.0) {
|
||||
other.push(Const(cs))
|
||||
}
|
||||
};
|
||||
trace!("group product: {:?} => {:?}", es2, other);
|
||||
other
|
||||
}
|
||||
|
||||
fn distribute_product_sums(mut es: Exprs) -> Expr {
|
||||
let es_pre = es.clone();
|
||||
use itertools::Itertools;
|
||||
use Expr::*;
|
||||
for e in &mut es {
|
||||
*e = e.clone().distribute();
|
||||
}
|
||||
let sums = es
|
||||
.drain_filter(|e| match e {
|
||||
Sum(_) => true,
|
||||
_ => false,
|
||||
})
|
||||
.map(|e| {
|
||||
trace!("sum in product: {}", e);
|
||||
match e.simplify() {
|
||||
Sum(es) => es,
|
||||
o => vec![o],
|
||||
}
|
||||
});
|
||||
let products: Vec<_> = sums.multi_cartesian_product().collect();
|
||||
if products.is_empty() {
|
||||
trace!("distribute_product_sums: no sums to distribute");
|
||||
return Product(es);
|
||||
}
|
||||
let sums = products
|
||||
.into_iter()
|
||||
.map(|mut prod| {
|
||||
prod.extend(es.clone());
|
||||
trace!("prod: {}", Product(prod.clone()));
|
||||
Product(prod)
|
||||
})
|
||||
.collect();
|
||||
let res = Sum(sums);
|
||||
trace!("distribute_product_sums: {} => {}", Product(es_pre), res);
|
||||
res
|
||||
}
|
||||
|
||||
impl Unknowns for Expr {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => u.unknowns(),
|
||||
Const(_) => UnknownSet::default(),
|
||||
Sum(es) | Product(es) => es.unknowns(),
|
||||
Div(l, r) => l.unknowns().union(&r.unknowns()).cloned().collect(),
|
||||
Neg(e) => e.unknowns(),
|
||||
}
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => u.has_unknowns(),
|
||||
Const(_) => false,
|
||||
Sum(es) | Product(es) => es.has_unknowns(),
|
||||
Div(l, r) => l.has_unknowns() || r.has_unknowns(),
|
||||
Neg(e) => e.has_unknowns(),
|
||||
}
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u1) => u1.has_unknown(u),
|
||||
Const(_) => false,
|
||||
Sum(es) | Product(es) => es.has_unknown(u),
|
||||
Div(l, r) => l.has_unknown(u) || r.has_unknown(u),
|
||||
Neg(e) => e.has_unknown(u),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Expr {
|
||||
pub fn new_sum(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Sum(vec![e1, e2])
|
||||
}
|
||||
pub fn new_product(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Product(vec![e1, e2])
|
||||
}
|
||||
pub fn new_neg(e1: Expr) -> Expr {
|
||||
Expr::Neg(Box::new(e1))
|
||||
}
|
||||
pub fn new_div(num: Expr, den: Expr) -> Expr {
|
||||
Expr::Div(Box::new(num), Box::new(den))
|
||||
}
|
||||
pub fn new_minus(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Sum(vec![e1, Expr::new_neg(e2)])
|
||||
}
|
||||
pub fn new_inv(den: Expr) -> Expr {
|
||||
Expr::new_div(Expr::Const(1.), den)
|
||||
}
|
||||
|
||||
pub fn is_zero(self) -> bool {
|
||||
use Expr::*;
|
||||
match self.simplify() {
|
||||
Const(c) => relative_eq!(c, 0.),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_one(self) -> bool {
|
||||
use Expr::*;
|
||||
match self.simplify() {
|
||||
Const(c) => relative_eq!(c, 1.),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate_with(self, eqns: &Eqns) -> Expr {
|
||||
use Expr::*;
|
||||
for eqn in &eqns.0 {
|
||||
if self == eqn.0 {
|
||||
return eqn.1.clone();
|
||||
}
|
||||
}
|
||||
match self {
|
||||
Sum(mut es) => {
|
||||
for e in &mut es {
|
||||
*e = e.clone().evaluate_with(eqns);
|
||||
}
|
||||
Sum(es)
|
||||
}
|
||||
Product(mut es) => {
|
||||
for e in &mut es {
|
||||
*e = e.clone().evaluate_with(eqns);
|
||||
}
|
||||
Product(es)
|
||||
}
|
||||
Neg(mut e) => {
|
||||
*e = e.evaluate_with(eqns);
|
||||
Neg(e)
|
||||
}
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.evaluate_with(eqns);
|
||||
*den = den.evaluate_with(eqns);
|
||||
Div(num, den)
|
||||
}
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn simplify(self) -> Expr {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Sum(es) => {
|
||||
let pre_new_es = es.clone();
|
||||
let mut new_es: Vec<_> = es
|
||||
.into_iter()
|
||||
.map(|e| e.simplify())
|
||||
.flat_map(|e| match e {
|
||||
Sum(more_es) => more_es,
|
||||
other => vec![other],
|
||||
})
|
||||
.collect();
|
||||
new_es = group_sum(new_es);
|
||||
trace!(
|
||||
"simplify sum {} => {}",
|
||||
Sum(pre_new_es),
|
||||
Sum(new_es.clone())
|
||||
);
|
||||
|
||||
match new_es.len() {
|
||||
0 => Const(0.), // none
|
||||
1 => new_es.into_iter().next().unwrap(), // one
|
||||
_ => Sum(new_es), // many
|
||||
}
|
||||
}
|
||||
Product(es) => {
|
||||
let pre_new_es = es.clone();
|
||||
let new_es: Vec<_> = es
|
||||
.into_iter()
|
||||
.map(|e| e.simplify())
|
||||
.flat_map(|e| match e {
|
||||
Product(more_es) => more_es,
|
||||
other => vec![other],
|
||||
})
|
||||
.collect();
|
||||
let new_es = group_product(new_es);
|
||||
trace!(
|
||||
"simplify product {} => {}",
|
||||
Product(pre_new_es),
|
||||
Product(new_es.clone())
|
||||
);
|
||||
match new_es.len() {
|
||||
0 => Const(1.), // none
|
||||
1 => new_es.into_iter().next().unwrap(), // one
|
||||
_ => Product(new_es), // many
|
||||
}
|
||||
}
|
||||
Neg(mut v) => {
|
||||
*v = v.simplify();
|
||||
trace!("simplify neg {}", Neg(v.clone()));
|
||||
match v {
|
||||
box Const(c) => Const(-c),
|
||||
box Neg(v) => *v,
|
||||
box Product(mut es) => {
|
||||
es.push(Const(-1.));
|
||||
Product(es).simplify()
|
||||
}
|
||||
e => Product(vec![Const(-1.), *e]),
|
||||
}
|
||||
}
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.simplify();
|
||||
*den = den.simplify();
|
||||
trace!("simplify div {}", Div(num.clone(), den.clone()));
|
||||
match (num, den) {
|
||||
(box Const(num), box Const(den)) => Const(num / den),
|
||||
(num, box Const(den)) => {
|
||||
if relative_eq!(den, 1.) {
|
||||
*num
|
||||
} else {
|
||||
Expr::new_product(*num, Const(1. / den))
|
||||
}
|
||||
}
|
||||
(num, box Div(dennum, denden)) => {
|
||||
Div(Box::new(Product(vec![*num, *denden])), dennum).simplify()
|
||||
}
|
||||
(box Product(mut es), box den) => match es.remove_item(&den) {
|
||||
Some(_) => Product(es),
|
||||
None => Expr::new_div(Product(es), den),
|
||||
},
|
||||
(num, den) => {
|
||||
if num == den {
|
||||
Expr::Const(1.)
|
||||
} else {
|
||||
Div(num, den)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
e => e,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn distribute(self) -> Expr {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Sum(mut es) => {
|
||||
let es_pre = es.clone();
|
||||
for e in &mut es {
|
||||
*e = e.clone().distribute();
|
||||
}
|
||||
let res = Sum(es);
|
||||
trace!("distribute sum {} => {}", Sum(es_pre), res);
|
||||
res
|
||||
}
|
||||
Product(es) => distribute_product_sums(es),
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.distribute();
|
||||
*den = den.distribute();
|
||||
match (num, den) {
|
||||
(box Sum(es), box den) => Sum(es
|
||||
.into_iter()
|
||||
.map(|e| Expr::new_div(e, den.clone()))
|
||||
.collect()),
|
||||
(mut num, mut den) => Div(num, den),
|
||||
}
|
||||
}
|
||||
Neg(v) => match v {
|
||||
// box Sum(mut l, mut r) => {
|
||||
// *l = Neg(l.clone()).distribute();
|
||||
// *r = Neg(r.clone()).distribute();
|
||||
// Sum(l, r)
|
||||
// }
|
||||
// box Product(mut l, r) => {
|
||||
// *l = Neg(l.clone()).distribute();
|
||||
// Product(l, r)
|
||||
// }
|
||||
box Neg(v) => v.distribute(),
|
||||
box Div(mut num, mut den) => {
|
||||
*num = Neg(num.clone()).distribute();
|
||||
*den = Neg(den.clone()).distribute();
|
||||
Div(num, den)
|
||||
}
|
||||
e => Neg(e),
|
||||
},
|
||||
e => e,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Expr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => write!(f, "{}", u),
|
||||
Const(c) => write!(f, "{}", c),
|
||||
Sum(es) => write_separated_exprs(es, f, " + "),
|
||||
Product(es) => write_separated_exprs(es, f, " * "),
|
||||
Div(num, den) => write!(f, "({}) / ({})", num, den),
|
||||
Neg(e) => write!(f, "-({})", e),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct Eqn(Expr, Expr);
|
||||
pub struct Eqn(pub Expr, pub Expr);
|
||||
|
||||
impl Unknowns for Eqn {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
|
460
src/math/expr.rs
Normal file
460
src/math/expr.rs
Normal file
@ -0,0 +1,460 @@
|
||||
use std::collections::BTreeMap;
|
||||
use std::fmt;
|
||||
|
||||
use super::Scalar;
|
||||
use super::eqn::Eqns;
|
||||
use super::unknown::{Unknown, Unknowns, UnknownSet};
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub enum Expr {
|
||||
Unkn(Unknown),
|
||||
Const(Scalar),
|
||||
Sum(Exprs),
|
||||
Neg(Box<Expr>),
|
||||
Product(Exprs),
|
||||
Div(Box<Expr>, Box<Expr>),
|
||||
}
|
||||
|
||||
pub type Exprs = Vec<Expr>;
|
||||
|
||||
impl Unknowns for Exprs {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
self.iter().flat_map(|e: &Expr| e.unknowns()).collect()
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
self.iter().any(|e: &Expr| e.has_unknowns())
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
self.iter().any(|e: &Expr| e.has_unknown(u))
|
||||
}
|
||||
}
|
||||
|
||||
fn write_separated_exprs(es: &Exprs, f: &mut fmt::Formatter, sep: &str) -> fmt::Result {
|
||||
let mut is_first = true;
|
||||
for e in es {
|
||||
if is_first {
|
||||
is_first = false;
|
||||
} else {
|
||||
write!(f, "{}", sep)?
|
||||
}
|
||||
write!(f, "({})", e)?
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn remove_common_terms(l: &mut Vec<Expr>, r: &mut Vec<Expr>) -> Vec<Expr> {
|
||||
let common: Vec<_> = l.drain_filter(|e| r.contains(e)).collect();
|
||||
common.iter().for_each(|e| {
|
||||
r.remove_item(e);
|
||||
});
|
||||
common
|
||||
}
|
||||
|
||||
fn remove_term(terms: &mut Vec<Expr>, term: &Expr) -> Option<Expr> {
|
||||
terms.remove_item(term)
|
||||
}
|
||||
|
||||
fn sum_fold(l: Expr, r: Expr) -> Expr {
|
||||
use Expr::*;
|
||||
match (l, r) {
|
||||
(Const(lc), Const(rc)) => Const(lc + rc),
|
||||
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 0.) => o,
|
||||
(Product(mut l), Product(mut r)) => {
|
||||
let comm = remove_common_terms(&mut l, &mut r);
|
||||
if comm.is_empty() {
|
||||
Expr::new_sum(Product(l), Product(r))
|
||||
} else {
|
||||
Expr::new_product(Product(comm), Expr::new_sum(Product(l), Product(r)))
|
||||
}
|
||||
}
|
||||
(Product(mut l), r) | (r, Product(mut l)) => {
|
||||
let comm = remove_term(&mut l, &r);
|
||||
match comm {
|
||||
Some(_) => Expr::new_product(r, Expr::new_sum(Product(l), Const(1.))),
|
||||
None => Expr::new_sum(Product(l), r),
|
||||
}
|
||||
}
|
||||
(l, r) => Expr::new_sum(l, r),
|
||||
}
|
||||
}
|
||||
|
||||
fn group_sum(es: Exprs) -> Exprs {
|
||||
use Expr::*;
|
||||
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
|
||||
for e in es {
|
||||
let unkns = e.unknowns();
|
||||
match common.get_mut(&unkns) {
|
||||
None => {
|
||||
match e {
|
||||
Const(c) if relative_eq!(c, 0.) => (),
|
||||
e => {
|
||||
common.insert(unkns, e);
|
||||
}
|
||||
};
|
||||
}
|
||||
Some(existing) => {
|
||||
match existing {
|
||||
Sum(ref mut es) => {
|
||||
// already failed at merging, so just add it to the list
|
||||
es.push(e);
|
||||
}
|
||||
other => {
|
||||
*other = sum_fold(other.clone(), e);
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
}
|
||||
for c in common.values() {
|
||||
trace!("group sum value: {}", c);
|
||||
}
|
||||
common.into_iter().map(|(_, v)| v).collect()
|
||||
}
|
||||
|
||||
fn product_fold(l: Expr, r: Expr) -> Expr {
|
||||
use Expr::*;
|
||||
match (l, r) {
|
||||
(Const(lc), Const(rc)) => Const(lc * rc),
|
||||
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 1.) => o,
|
||||
(Const(c), _) | (_, Const(c)) if relative_eq!(c, 0.) => Const(0.),
|
||||
(Div(num, den), mul) | (mul, Div(num, den)) => {
|
||||
if mul == *den {
|
||||
*num
|
||||
} else {
|
||||
Expr::Div(Box::new(Expr::Product(vec![*num, mul])), den).simplify()
|
||||
}
|
||||
}
|
||||
(Product(mut ls), Product(mut rs)) => {
|
||||
ls.append(&mut rs);
|
||||
Product(ls)
|
||||
},
|
||||
(Product(mut ps), o) | (o, Product(mut ps)) => {
|
||||
ps.push(o);
|
||||
Product(ps)
|
||||
},
|
||||
(l, r) => Expr::new_product(l, r),
|
||||
}
|
||||
}
|
||||
|
||||
fn group_product(es: Exprs) -> Exprs {
|
||||
use Expr::*;
|
||||
let es2 = es.clone();
|
||||
let mut consts: Option<Scalar> = None;
|
||||
let mut other = Exprs::new();
|
||||
for e in es {
|
||||
let unkns = e.unknowns();
|
||||
match e {
|
||||
Const(c) => match consts {
|
||||
None => consts = Some(c),
|
||||
Some(cs) => consts = Some(c * cs),
|
||||
}
|
||||
e => {
|
||||
other.push(e)
|
||||
}
|
||||
}
|
||||
}
|
||||
if let Some(cs) = consts {
|
||||
if relative_eq!(cs, 0.0) {
|
||||
other.clear();
|
||||
other.push(Const(0.0))
|
||||
} else if relative_ne!(cs, 1.0) {
|
||||
other.push(Const(cs))
|
||||
}
|
||||
};
|
||||
trace!("group product: {:?} => {:?}", es2, other);
|
||||
other
|
||||
}
|
||||
|
||||
fn distribute_product_sums(mut es: Exprs) -> Expr {
|
||||
let es_pre = es.clone();
|
||||
use itertools::Itertools;
|
||||
use Expr::*;
|
||||
for e in &mut es {
|
||||
*e = e.clone().distribute();
|
||||
}
|
||||
let sums = es
|
||||
.drain_filter(|e| match e {
|
||||
Sum(_) => true,
|
||||
_ => false,
|
||||
})
|
||||
.map(|e| {
|
||||
trace!("sum in product: {}", e);
|
||||
match e.simplify() {
|
||||
Sum(es) => es,
|
||||
o => vec![o],
|
||||
}
|
||||
});
|
||||
let products: Vec<_> = sums.multi_cartesian_product().collect();
|
||||
if products.is_empty() {
|
||||
trace!("distribute_product_sums: no sums to distribute");
|
||||
return Product(es);
|
||||
}
|
||||
let sums = products
|
||||
.into_iter()
|
||||
.map(|mut prod| {
|
||||
prod.extend(es.clone());
|
||||
trace!("prod: {}", Product(prod.clone()));
|
||||
Product(prod)
|
||||
})
|
||||
.collect();
|
||||
let res = Sum(sums);
|
||||
trace!("distribute_product_sums: {} => {}", Product(es_pre), res);
|
||||
res
|
||||
}
|
||||
|
||||
impl Unknowns for Expr {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => u.unknowns(),
|
||||
Const(_) => UnknownSet::default(),
|
||||
Sum(es) | Product(es) => es.unknowns(),
|
||||
Div(l, r) => l.unknowns().union(&r.unknowns()).cloned().collect(),
|
||||
Neg(e) => e.unknowns(),
|
||||
}
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => u.has_unknowns(),
|
||||
Const(_) => false,
|
||||
Sum(es) | Product(es) => es.has_unknowns(),
|
||||
Div(l, r) => l.has_unknowns() || r.has_unknowns(),
|
||||
Neg(e) => e.has_unknowns(),
|
||||
}
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u1) => u1.has_unknown(u),
|
||||
Const(_) => false,
|
||||
Sum(es) | Product(es) => es.has_unknown(u),
|
||||
Div(l, r) => l.has_unknown(u) || r.has_unknown(u),
|
||||
Neg(e) => e.has_unknown(u),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Expr {
|
||||
pub fn new_sum(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Sum(vec![e1, e2])
|
||||
}
|
||||
pub fn new_product(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Product(vec![e1, e2])
|
||||
}
|
||||
pub fn new_neg(e1: Expr) -> Expr {
|
||||
Expr::Neg(Box::new(e1))
|
||||
}
|
||||
pub fn new_div(num: Expr, den: Expr) -> Expr {
|
||||
Expr::Div(Box::new(num), Box::new(den))
|
||||
}
|
||||
pub fn new_minus(e1: Expr, e2: Expr) -> Expr {
|
||||
Expr::Sum(vec![e1, Expr::new_neg(e2)])
|
||||
}
|
||||
pub fn new_inv(den: Expr) -> Expr {
|
||||
Expr::new_div(Expr::Const(1.), den)
|
||||
}
|
||||
|
||||
pub fn is_zero(self) -> bool {
|
||||
use Expr::*;
|
||||
match self.simplify() {
|
||||
Const(c) => relative_eq!(c, 0.),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_one(self) -> bool {
|
||||
use Expr::*;
|
||||
match self.simplify() {
|
||||
Const(c) => relative_eq!(c, 1.),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate_with(self, eqns: &Eqns) -> Expr {
|
||||
use Expr::*;
|
||||
for eqn in &eqns.0 {
|
||||
if self == eqn.0 {
|
||||
return eqn.1.clone();
|
||||
}
|
||||
}
|
||||
match self {
|
||||
Sum(mut es) => {
|
||||
for e in &mut es {
|
||||
*e = e.clone().evaluate_with(eqns);
|
||||
}
|
||||
Sum(es)
|
||||
}
|
||||
Product(mut es) => {
|
||||
for e in &mut es {
|
||||
*e = e.clone().evaluate_with(eqns);
|
||||
}
|
||||
Product(es)
|
||||
}
|
||||
Neg(mut e) => {
|
||||
*e = e.evaluate_with(eqns);
|
||||
Neg(e)
|
||||
}
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.evaluate_with(eqns);
|
||||
*den = den.evaluate_with(eqns);
|
||||
Div(num, den)
|
||||
}
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn simplify(self) -> Expr {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Sum(es) => {
|
||||
let pre_new_es = es.clone();
|
||||
let mut new_es: Vec<_> = es
|
||||
.into_iter()
|
||||
.map(|e| e.simplify())
|
||||
.flat_map(|e| match e {
|
||||
Sum(more_es) => more_es,
|
||||
other => vec![other],
|
||||
})
|
||||
.collect();
|
||||
new_es = group_sum(new_es);
|
||||
trace!(
|
||||
"simplify sum {} => {}",
|
||||
Sum(pre_new_es),
|
||||
Sum(new_es.clone())
|
||||
);
|
||||
|
||||
match new_es.len() {
|
||||
0 => Const(0.), // none
|
||||
1 => new_es.into_iter().next().unwrap(), // one
|
||||
_ => Sum(new_es), // many
|
||||
}
|
||||
}
|
||||
Product(es) => {
|
||||
let pre_new_es = es.clone();
|
||||
let new_es: Vec<_> = es
|
||||
.into_iter()
|
||||
.map(|e| e.simplify())
|
||||
.flat_map(|e| match e {
|
||||
Product(more_es) => more_es,
|
||||
other => vec![other],
|
||||
})
|
||||
.collect();
|
||||
let new_es = group_product(new_es);
|
||||
trace!(
|
||||
"simplify product {} => {}",
|
||||
Product(pre_new_es),
|
||||
Product(new_es.clone())
|
||||
);
|
||||
match new_es.len() {
|
||||
0 => Const(1.), // none
|
||||
1 => new_es.into_iter().next().unwrap(), // one
|
||||
_ => Product(new_es), // many
|
||||
}
|
||||
}
|
||||
Neg(mut v) => {
|
||||
*v = v.simplify();
|
||||
trace!("simplify neg {}", Neg(v.clone()));
|
||||
match v {
|
||||
box Const(c) => Const(-c),
|
||||
box Neg(v) => *v,
|
||||
box Product(mut es) => {
|
||||
es.push(Const(-1.));
|
||||
Product(es).simplify()
|
||||
}
|
||||
e => Product(vec![Const(-1.), *e]),
|
||||
}
|
||||
}
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.simplify();
|
||||
*den = den.simplify();
|
||||
trace!("simplify div {}", Div(num.clone(), den.clone()));
|
||||
match (num, den) {
|
||||
(box Const(num), box Const(den)) => Const(num / den),
|
||||
(num, box Const(den)) => {
|
||||
if relative_eq!(den, 1.) {
|
||||
*num
|
||||
} else {
|
||||
Expr::new_product(*num, Const(1. / den))
|
||||
}
|
||||
}
|
||||
(num, box Div(dennum, denden)) => {
|
||||
Div(Box::new(Product(vec![*num, *denden])), dennum).simplify()
|
||||
}
|
||||
(box Product(mut es), box den) => match es.remove_item(&den) {
|
||||
Some(_) => Product(es),
|
||||
None => Expr::new_div(Product(es), den),
|
||||
},
|
||||
(num, den) => {
|
||||
if num == den {
|
||||
Expr::Const(1.)
|
||||
} else {
|
||||
Div(num, den)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
e => e,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn distribute(self) -> Expr {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Sum(mut es) => {
|
||||
let es_pre = es.clone();
|
||||
for e in &mut es {
|
||||
*e = e.clone().distribute();
|
||||
}
|
||||
let res = Sum(es);
|
||||
trace!("distribute sum {} => {}", Sum(es_pre), res);
|
||||
res
|
||||
}
|
||||
Product(es) => distribute_product_sums(es),
|
||||
Div(mut num, mut den) => {
|
||||
*num = num.distribute();
|
||||
*den = den.distribute();
|
||||
match (num, den) {
|
||||
(box Sum(es), box den) => Sum(es
|
||||
.into_iter()
|
||||
.map(|e| Expr::new_div(e, den.clone()))
|
||||
.collect()),
|
||||
(mut num, mut den) => Div(num, den),
|
||||
}
|
||||
}
|
||||
Neg(v) => match v {
|
||||
// box Sum(mut l, mut r) => {
|
||||
// *l = Neg(l.clone()).distribute();
|
||||
// *r = Neg(r.clone()).distribute();
|
||||
// Sum(l, r)
|
||||
// }
|
||||
// box Product(mut l, r) => {
|
||||
// *l = Neg(l.clone()).distribute();
|
||||
// Product(l, r)
|
||||
// }
|
||||
box Neg(v) => v.distribute(),
|
||||
box Div(mut num, mut den) => {
|
||||
*num = Neg(num.clone()).distribute();
|
||||
*den = Neg(den.clone()).distribute();
|
||||
Div(num, den)
|
||||
}
|
||||
e => Neg(e),
|
||||
},
|
||||
e => e,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Expr {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Expr::*;
|
||||
match self {
|
||||
Unkn(u) => write!(f, "{}", u),
|
||||
Const(c) => write!(f, "{}", c),
|
||||
Sum(es) => write_separated_exprs(es, f, " + "),
|
||||
Product(es) => write_separated_exprs(es, f, " * "),
|
||||
Div(num, den) => write!(f, "({}) / ({})", num, den),
|
||||
Neg(e) => write!(f, "-({})", e),
|
||||
}
|
||||
}
|
||||
}
|
440
src/math/mod.rs
440
src/math/mod.rs
@ -1,446 +1,24 @@
|
||||
use std::fmt;
|
||||
|
||||
pub mod eqn;
|
||||
pub mod expr;
|
||||
pub mod ops;
|
||||
pub mod region;
|
||||
pub mod unknown;
|
||||
pub mod vec;
|
||||
|
||||
pub use eqn::{Expr, Unknown};
|
||||
pub use eqn::{Eqn, Eqns};
|
||||
pub use expr::{Expr, Exprs};
|
||||
pub use unknown::{Unknown, Unknowns, UnknownSet};
|
||||
pub use region::{Region, Region1, Line2, Region2, GenericRegion};
|
||||
pub use ops::*;
|
||||
pub use vec::*;
|
||||
|
||||
pub type Scalar = f64;
|
||||
|
||||
// #[derive(Clone, Copy, PartialEq, Debug)]
|
||||
// pub enum Value {
|
||||
// Known(Scalar),
|
||||
// Unkn(Unknown),
|
||||
// }
|
||||
pub type Value = eqn::Expr;
|
||||
|
||||
// pub type Vec2 = nalgebra::Vector2<Value>;
|
||||
// pub type Point2 = nalgebra::Point2<Value>;
|
||||
|
||||
// pub type Rot2 = nalgebra::UnitComplex<Value>;
|
||||
|
||||
pub trait GenericRegion {
|
||||
fn full() -> Self;
|
||||
fn intersection(self, other: Self) -> Self;
|
||||
fn simplify(self) -> Self;
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self;
|
||||
}
|
||||
|
||||
pub trait Region<T>: GenericRegion {
|
||||
fn singleton(value: T) -> Self;
|
||||
|
||||
fn nearest(&self, value: &T) -> Option<T>;
|
||||
fn contains(&self, value: &T) -> Option<bool>;
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Region1 {
|
||||
Empty,
|
||||
Singleton(Value),
|
||||
Range(Value, Value),
|
||||
Intersection(Box<Region1>, Box<Region1>),
|
||||
// Union(Box<Region1>, Box<Region1>),
|
||||
Full,
|
||||
}
|
||||
|
||||
impl fmt::Display for Region1 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => write!(f, "Ø"),
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Range(l, u) => write!(f, "[ {}, {} ]", l, u),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericRegion for Region1 {
|
||||
fn intersection(self, other: Region1) -> Self {
|
||||
Region1::Intersection(Box::new(self), Box::new(other))
|
||||
}
|
||||
|
||||
fn full() -> Self {
|
||||
Region1::Full
|
||||
}
|
||||
|
||||
fn simplify(self) -> Self {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.simplify()),
|
||||
Range(l, u) => Range(l.simplify(), u.simplify()),
|
||||
Intersection(r1, r2) => r1.simplify().intersection(r2.simplify()),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.evaluate_with(eqns)),
|
||||
Range(l, u) => Range(l.evaluate_with(eqns), u.evaluate_with(eqns)),
|
||||
Intersection(r1, r2) => r1.evaluate_with(eqns).intersection(r2.evaluate_with(eqns)),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Scalar> for Region1 {
|
||||
fn singleton(value: Scalar) -> Self {
|
||||
Region1::Singleton(value.into())
|
||||
}
|
||||
|
||||
fn contains(&self, n: &Scalar) -> Option<bool> {
|
||||
use Expr::Const;
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => Some(false),
|
||||
Singleton(n1) => match n1 {
|
||||
Const(c) => Some(relative_eq!(c, n)),
|
||||
_ => None,
|
||||
},
|
||||
Range(l, u) => match (l, u) {
|
||||
(Const(cl), Const(cu)) => Some(*cl <= *n && *n <= *cu),
|
||||
_ => None,
|
||||
},
|
||||
Intersection(r1, r2) => r1
|
||||
.contains(n)
|
||||
.and_then(|c1| r2.contains(n).map(|c2| c1 && c2)),
|
||||
// Union(r1, r2) => r1.contains(n) || r2.contains(n),
|
||||
Full => Some(true),
|
||||
}
|
||||
}
|
||||
|
||||
fn nearest(&self, s: &Scalar) -> Option<Scalar> {
|
||||
use Expr::Const;
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(*s),
|
||||
Singleton(n) => match n {
|
||||
Const(c) => Some(*c),
|
||||
_ => None,
|
||||
},
|
||||
Range(l, u) => match (l, u) {
|
||||
(Const(cl), Const(cu)) => match (cl < s, s < cu) {
|
||||
(true, true) => Some(*s),
|
||||
(true, false) => Some(*cu),
|
||||
(false, true) => Some(*cl),
|
||||
_ => None,
|
||||
},
|
||||
_ => None,
|
||||
},
|
||||
Intersection(r1, r2) => {
|
||||
unimplemented!()
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
let distance = |a: Scalar, b: Scalar| (a - b).abs();
|
||||
match (r1.nearest(s), r2.nearest(s)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(*s, n1) <= distance(*s, n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// line starting at start, point at angle dir, with range extent
|
||||
// ie. start + (cos dir, sin dir) * t for t in extent
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Line2 {
|
||||
start: Point2<Value>,
|
||||
dir: Rot2,
|
||||
extent: Region1,
|
||||
}
|
||||
|
||||
impl fmt::Display for Line2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{ <x, y> = {} + {} * {} }}", self.start, self.dir, self.extent)
|
||||
}
|
||||
}
|
||||
|
||||
impl Line2 {
|
||||
pub fn new(start: Point2<Value>, dir: Rot2, extent: Region1) -> Self {
|
||||
Self { start, dir, extent }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, t: Value) -> Point2<Value> {
|
||||
self.start.clone() + self.dir.clone() * t
|
||||
}
|
||||
|
||||
pub fn evaluate_extent(&self) -> Option<Point2<Value>> {
|
||||
match &self.extent {
|
||||
Region1::Singleton(t) => Some(self.evaluate(t.clone())),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn with_extent(self, new_extent: Region1) -> Line2 {
|
||||
Line2 { start: self.start, dir: self.dir, extent: new_extent }
|
||||
}
|
||||
|
||||
pub fn nearest(&self, p: &Point2<Value>) -> Point2<Value> {
|
||||
// rotate angle 90 degrees
|
||||
let perp_dir = self.dir.clone() + Rot2::cardinal(1);
|
||||
let perp = Line2::new(p.clone(), perp_dir, Region1::Full);
|
||||
match self.intersect(&perp) {
|
||||
Region2::Singleton(np) => np,
|
||||
Region2::Line(l) => l.evaluate_extent().expect("Line2::nearest not found"),
|
||||
_ => panic!("Line2::nearest not found!")
|
||||
}
|
||||
}
|
||||
|
||||
pub fn intersect(&self, other: &Line2) -> Region2 {
|
||||
// if the two lines are parallel...
|
||||
let dirs = self.dir.clone() - other.dir.clone();
|
||||
if relative_eq!(dirs.sin(), 0.) {
|
||||
let starts = self.dir.conj() * (other.start.clone() - self.start.clone());
|
||||
return if starts.y.simplify().is_zero() {
|
||||
// and they are colinear
|
||||
Region2::Line(self.clone())
|
||||
} else {
|
||||
// they are parallel and never intersect
|
||||
Region2::Empty
|
||||
};
|
||||
}
|
||||
// TODO: respect extent
|
||||
let (a, b) = (self, other);
|
||||
let (a_0, a_v, b_0, b_v) = (
|
||||
a.start.clone(),
|
||||
a.dir.clone(),
|
||||
b.start.clone(),
|
||||
b.dir.clone(),
|
||||
);
|
||||
let (a_c, a_s, b_c, b_s) = (a_v.cos(), a_v.sin(), b_v.cos(), b_v.sin());
|
||||
let t_b = (a_0.x.clone() * a_s.clone() - a_0.y.clone() * a_c.clone()
|
||||
- b_0.x.clone() * a_s.clone()
|
||||
+ b_0.y.clone() * a_c.clone())
|
||||
/ (a_s.clone() * b_c.clone() - a_c.clone() * b_s.clone());
|
||||
// Region2::Singleton(b.evaluate(t_b))
|
||||
trace!("intersect a: {}, b: {}, t_b = {}", a, b, t_b);
|
||||
let res = Region2::Line(b.clone().with_extent(Region1::Singleton(t_b.simplify())));
|
||||
trace!("intersect a: {}, b: {} = {}", a, b, res);
|
||||
res
|
||||
}
|
||||
|
||||
pub fn simplify(self) -> Region2 {
|
||||
let new_l = Line2 {
|
||||
start: self.start.simplify(),
|
||||
dir: self.dir,
|
||||
extent: self.extent.simplify(),
|
||||
};
|
||||
trace!("line {}: simplify evaluate extent: {:?}", new_l, new_l.evaluate_extent());
|
||||
if let Some(p) = new_l.evaluate_extent() {
|
||||
return Region2::Singleton(p.simplify());
|
||||
}
|
||||
Region2::Line(new_l)
|
||||
}
|
||||
|
||||
pub fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
Line2 {
|
||||
start: self.start.evaluate_with(eqns),
|
||||
dir: self.dir,
|
||||
extent: self.extent.evaluate_with(eqns),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Region2 {
|
||||
Empty,
|
||||
// single point at 0
|
||||
Singleton(Point2<Value>),
|
||||
Line(Line2),
|
||||
// #[allow(dead_code)]
|
||||
// Union(Box<Region2>, Box<Region2>),
|
||||
Intersection(Box<Region2>, Box<Region2>),
|
||||
Full,
|
||||
}
|
||||
|
||||
impl fmt::Display for Region2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => write!(f, "ز"),
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Line(l) => l.fmt(f),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ²")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericRegion for Region2 {
|
||||
fn full() -> Self {
|
||||
Region2::Full
|
||||
}
|
||||
|
||||
fn intersection(self, other: Self) -> Self {
|
||||
use Region2::*;
|
||||
match (self, other) {
|
||||
(Empty, _) | (_, Empty) => Empty,
|
||||
(Full, r) | (r, Full) => r,
|
||||
(r1, r2) => Intersection(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
|
||||
fn simplify(self) -> Region2 {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.simplify()),
|
||||
Line(l) => l.simplify(),
|
||||
Intersection(r1, r2) => r1.simplify().intersect(r2.simplify()),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.evaluate_with(eqns)),
|
||||
Line(l) => Line(l.evaluate_with(eqns)),
|
||||
Intersection(r1, r2) => r1.evaluate_with(eqns).intersection(r2.evaluate_with(eqns)),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Point2<Scalar>> for Region2 {
|
||||
fn singleton(value: Point2<Scalar>) -> Self {
|
||||
Region2::Singleton(value.into())
|
||||
}
|
||||
|
||||
fn contains(&self, p: &Point2<Scalar>) -> Option<bool> {
|
||||
self.nearest(p).map(|n| n == *p)
|
||||
}
|
||||
|
||||
fn nearest(&self, p: &Point2<Scalar>) -> Option<Point2<Scalar>> {
|
||||
use Expr::Const;
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(p.clone()),
|
||||
Singleton(n) => match (&n.x, &n.y) {
|
||||
(Const(cx), Const(cy)) => Some(Point2::new(*cx, *cy)),
|
||||
_ => None,
|
||||
},
|
||||
Line(line) => {
|
||||
let pv: Point2<Value> = p.clone().into();
|
||||
let n = line.nearest(&pv).simplify();
|
||||
trace!("line {} nearest to {}: {}", line, pv, n);
|
||||
match (n.x, n.y) {
|
||||
(Const(cx), Const(cy)) => Some(Point2::new(cx, cy)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
Intersection(r1, r2) => {
|
||||
None
|
||||
// r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Point2<Value>> for Region2 {
|
||||
fn singleton(value: Point2<Value>) -> Self {
|
||||
Region2::Singleton(value)
|
||||
}
|
||||
|
||||
fn contains(&self, p: &Point2<Value>) -> Option<bool> {
|
||||
self.nearest(p).map(|n| n.simplify() == p.clone().simplify())
|
||||
}
|
||||
|
||||
fn nearest(&self, p: &Point2<Value>) -> Option<Point2<Value>> {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(p.clone()),
|
||||
Singleton(n) => Some(n.clone()),
|
||||
Line(line) => Some(line.nearest(p)),
|
||||
Intersection(r1, r2) => {
|
||||
r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region2 {
|
||||
/*
|
||||
pub fn union(r1: Region2, r2: Region2) -> Region2 {
|
||||
use Region2::*;
|
||||
match (r1, r2) {
|
||||
(Empty, r) | (r, Empty) => r,
|
||||
(Full, _) | (_, Full) => Full,
|
||||
(r1, r2) => Union(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
pub fn intersect(self, other: Region2) -> Region2 {
|
||||
use Region2::*;
|
||||
match (self, other) {
|
||||
(Empty, _) | (_, Empty) => Empty,
|
||||
(Full, r) | (r, Full) => r.clone(),
|
||||
(Singleton(n1), Singleton(n2)) => {
|
||||
if n1 == n2 {
|
||||
Singleton(n1)
|
||||
} else {
|
||||
Region2::intersection(Singleton(n1), Singleton(n2))
|
||||
}
|
||||
}
|
||||
(Singleton(n), o) | (o, Singleton(n)) => {
|
||||
if o.contains(&n).unwrap_or(false) {
|
||||
Singleton(n)
|
||||
} else {
|
||||
Region2::intersection(Singleton(n), o)
|
||||
}
|
||||
}
|
||||
(Intersection(r1, r2), o) | (o, Intersection(r1, r2)) => {
|
||||
r1.intersect(*r2).intersect(o)
|
||||
}
|
||||
(Line(l1), Line(l2)) => l1.intersect(&l2).simplify(),
|
||||
/*(Union(un1, un2), o) | (o, Union(un1, un2)) => {
|
||||
Self::union(un1.intersect(o), un2.intersect(o))
|
||||
}*/
|
||||
(r1, r2) => Intersection(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
}
|
||||
pub type Value = Expr;
|
||||
|
@ -1,7 +1,6 @@
|
||||
use std::ops;
|
||||
|
||||
use super::eqn::{Expr, Unknown};
|
||||
use super::Scalar;
|
||||
use super::{Expr, Scalar, Unknown};
|
||||
|
||||
impl From<Scalar> for Expr {
|
||||
fn from(c: Scalar) -> Expr {
|
||||
|
432
src/math/region.rs
Normal file
432
src/math/region.rs
Normal file
@ -0,0 +1,432 @@
|
||||
use std::fmt;
|
||||
|
||||
use super::{eqn, Value, Scalar, Expr, Point2, Rot2};
|
||||
|
||||
// pub type Vec2 = nalgebra::Vector2<Value>;
|
||||
// pub type Point2 = nalgebra::Point2<Value>;
|
||||
|
||||
// pub type Rot2 = nalgebra::UnitComplex<Value>;
|
||||
|
||||
pub trait GenericRegion {
|
||||
fn full() -> Self;
|
||||
fn intersection(self, other: Self) -> Self;
|
||||
fn simplify(self) -> Self;
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self;
|
||||
}
|
||||
|
||||
pub trait Region<T>: GenericRegion {
|
||||
fn singleton(value: T) -> Self;
|
||||
|
||||
fn nearest(&self, value: &T) -> Option<T>;
|
||||
fn contains(&self, value: &T) -> Option<bool>;
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Region1 {
|
||||
Empty,
|
||||
Singleton(Value),
|
||||
Range(Value, Value),
|
||||
Intersection(Box<Region1>, Box<Region1>),
|
||||
// Union(Box<Region1>, Box<Region1>),
|
||||
Full,
|
||||
}
|
||||
|
||||
impl fmt::Display for Region1 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => write!(f, "Ø"),
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Range(l, u) => write!(f, "[ {}, {} ]", l, u),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericRegion for Region1 {
|
||||
fn intersection(self, other: Region1) -> Self {
|
||||
Region1::Intersection(Box::new(self), Box::new(other))
|
||||
}
|
||||
|
||||
fn full() -> Self {
|
||||
Region1::Full
|
||||
}
|
||||
|
||||
fn simplify(self) -> Self {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.simplify()),
|
||||
Range(l, u) => Range(l.simplify(), u.simplify()),
|
||||
Intersection(r1, r2) => r1.simplify().intersection(r2.simplify()),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
use Region1::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.evaluate_with(eqns)),
|
||||
Range(l, u) => Range(l.evaluate_with(eqns), u.evaluate_with(eqns)),
|
||||
Intersection(r1, r2) => r1.evaluate_with(eqns).intersection(r2.evaluate_with(eqns)),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Scalar> for Region1 {
|
||||
fn singleton(value: Scalar) -> Self {
|
||||
Region1::Singleton(value.into())
|
||||
}
|
||||
|
||||
fn contains(&self, n: &Scalar) -> Option<bool> {
|
||||
use Expr::Const;
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => Some(false),
|
||||
Singleton(n1) => match n1 {
|
||||
Const(c) => Some(relative_eq!(c, n)),
|
||||
_ => None,
|
||||
},
|
||||
Range(l, u) => match (l, u) {
|
||||
(Const(cl), Const(cu)) => Some(*cl <= *n && *n <= *cu),
|
||||
_ => None,
|
||||
},
|
||||
Intersection(r1, r2) => r1
|
||||
.contains(n)
|
||||
.and_then(|c1| r2.contains(n).map(|c2| c1 && c2)),
|
||||
// Union(r1, r2) => r1.contains(n) || r2.contains(n),
|
||||
Full => Some(true),
|
||||
}
|
||||
}
|
||||
|
||||
fn nearest(&self, s: &Scalar) -> Option<Scalar> {
|
||||
use Expr::Const;
|
||||
use Region1::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(*s),
|
||||
Singleton(n) => match n {
|
||||
Const(c) => Some(*c),
|
||||
_ => None,
|
||||
},
|
||||
Range(l, u) => match (l, u) {
|
||||
(Const(cl), Const(cu)) => match (cl < s, s < cu) {
|
||||
(true, true) => Some(*s),
|
||||
(true, false) => Some(*cu),
|
||||
(false, true) => Some(*cl),
|
||||
_ => None,
|
||||
},
|
||||
_ => None,
|
||||
},
|
||||
Intersection(r1, r2) => {
|
||||
unimplemented!()
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
let distance = |a: Scalar, b: Scalar| (a - b).abs();
|
||||
match (r1.nearest(s), r2.nearest(s)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(*s, n1) <= distance(*s, n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// line starting at start, point at angle dir, with range extent
|
||||
// ie. start + (cos dir, sin dir) * t for t in extent
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Line2 {
|
||||
start: Point2<Value>,
|
||||
dir: Rot2,
|
||||
extent: Region1,
|
||||
}
|
||||
|
||||
impl fmt::Display for Line2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{{ <x, y> = {} + {} * {} }}", self.start, self.dir, self.extent)
|
||||
}
|
||||
}
|
||||
|
||||
impl Line2 {
|
||||
pub fn new(start: Point2<Value>, dir: Rot2, extent: Region1) -> Self {
|
||||
Self { start, dir, extent }
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, t: Value) -> Point2<Value> {
|
||||
self.start.clone() + self.dir.clone() * t
|
||||
}
|
||||
|
||||
pub fn evaluate_extent(&self) -> Option<Point2<Value>> {
|
||||
match &self.extent {
|
||||
Region1::Singleton(t) => Some(self.evaluate(t.clone())),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn with_extent(self, new_extent: Region1) -> Line2 {
|
||||
Line2 { start: self.start, dir: self.dir, extent: new_extent }
|
||||
}
|
||||
|
||||
pub fn nearest(&self, p: &Point2<Value>) -> Point2<Value> {
|
||||
// rotate angle 90 degrees
|
||||
let perp_dir = self.dir.clone() + Rot2::cardinal(1);
|
||||
let perp = Line2::new(p.clone(), perp_dir, Region1::Full);
|
||||
match self.intersect(&perp) {
|
||||
Region2::Singleton(np) => np,
|
||||
Region2::Line(l) => l.evaluate_extent().expect("Line2::nearest not found"),
|
||||
_ => panic!("Line2::nearest not found!")
|
||||
}
|
||||
}
|
||||
|
||||
pub fn intersect(&self, other: &Line2) -> Region2 {
|
||||
// if the two lines are parallel...
|
||||
let dirs = self.dir.clone() - other.dir.clone();
|
||||
if relative_eq!(dirs.sin(), 0.) {
|
||||
let starts = self.dir.conj() * (other.start.clone() - self.start.clone());
|
||||
return if starts.y.simplify().is_zero() {
|
||||
// and they are colinear
|
||||
Region2::Line(self.clone())
|
||||
} else {
|
||||
// they are parallel and never intersect
|
||||
Region2::Empty
|
||||
};
|
||||
}
|
||||
// TODO: respect extent
|
||||
let (a, b) = (self, other);
|
||||
let (a_0, a_v, b_0, b_v) = (
|
||||
a.start.clone(),
|
||||
a.dir.clone(),
|
||||
b.start.clone(),
|
||||
b.dir.clone(),
|
||||
);
|
||||
let (a_c, a_s, b_c, b_s) = (a_v.cos(), a_v.sin(), b_v.cos(), b_v.sin());
|
||||
let t_b = (a_0.x.clone() * a_s.clone() - a_0.y.clone() * a_c.clone()
|
||||
- b_0.x.clone() * a_s.clone()
|
||||
+ b_0.y.clone() * a_c.clone())
|
||||
/ (a_s.clone() * b_c.clone() - a_c.clone() * b_s.clone());
|
||||
// Region2::Singleton(b.evaluate(t_b))
|
||||
trace!("intersect a: {}, b: {}, t_b = {}", a, b, t_b);
|
||||
let res = Region2::Line(b.clone().with_extent(Region1::Singleton(t_b.simplify())));
|
||||
trace!("intersect a: {}, b: {} = {}", a, b, res);
|
||||
res
|
||||
}
|
||||
|
||||
pub fn simplify(self) -> Region2 {
|
||||
let new_l = Line2 {
|
||||
start: self.start.simplify(),
|
||||
dir: self.dir,
|
||||
extent: self.extent.simplify(),
|
||||
};
|
||||
trace!("line {}: simplify evaluate extent: {:?}", new_l, new_l.evaluate_extent());
|
||||
if let Some(p) = new_l.evaluate_extent() {
|
||||
return Region2::Singleton(p.simplify());
|
||||
}
|
||||
Region2::Line(new_l)
|
||||
}
|
||||
|
||||
pub fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
Line2 {
|
||||
start: self.start.evaluate_with(eqns),
|
||||
dir: self.dir,
|
||||
extent: self.extent.evaluate_with(eqns),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Region2 {
|
||||
Empty,
|
||||
// single point at 0
|
||||
Singleton(Point2<Value>),
|
||||
Line(Line2),
|
||||
// #[allow(dead_code)]
|
||||
// Union(Box<Region2>, Box<Region2>),
|
||||
Intersection(Box<Region2>, Box<Region2>),
|
||||
Full,
|
||||
}
|
||||
|
||||
impl fmt::Display for Region2 {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => write!(f, "ز"),
|
||||
Singleton(v) => write!(f, "{{ {} }}", v),
|
||||
Line(l) => l.fmt(f),
|
||||
Intersection(r1, r2) => write!(f, "{} ∩ {}", r1, r2),
|
||||
Full => write!(f, "ℝ²")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GenericRegion for Region2 {
|
||||
fn full() -> Self {
|
||||
Region2::Full
|
||||
}
|
||||
|
||||
fn intersection(self, other: Self) -> Self {
|
||||
use Region2::*;
|
||||
match (self, other) {
|
||||
(Empty, _) | (_, Empty) => Empty,
|
||||
(Full, r) | (r, Full) => r,
|
||||
(r1, r2) => Intersection(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
|
||||
fn simplify(self) -> Region2 {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.simplify()),
|
||||
Line(l) => l.simplify(),
|
||||
Intersection(r1, r2) => r1.simplify().intersect(r2.simplify()),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_with(self, eqns: &eqn::Eqns) -> Self {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Singleton(n) => Singleton(n.evaluate_with(eqns)),
|
||||
Line(l) => Line(l.evaluate_with(eqns)),
|
||||
Intersection(r1, r2) => r1.evaluate_with(eqns).intersection(r2.evaluate_with(eqns)),
|
||||
other => other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Point2<Scalar>> for Region2 {
|
||||
fn singleton(value: Point2<Scalar>) -> Self {
|
||||
Region2::Singleton(value.into())
|
||||
}
|
||||
|
||||
fn contains(&self, p: &Point2<Scalar>) -> Option<bool> {
|
||||
self.nearest(p).map(|n| n == *p)
|
||||
}
|
||||
|
||||
fn nearest(&self, p: &Point2<Scalar>) -> Option<Point2<Scalar>> {
|
||||
use Expr::Const;
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(p.clone()),
|
||||
Singleton(n) => match (&n.x, &n.y) {
|
||||
(Const(cx), Const(cy)) => Some(Point2::new(*cx, *cy)),
|
||||
_ => None,
|
||||
},
|
||||
Line(line) => {
|
||||
let pv: Point2<Value> = p.clone().into();
|
||||
let n = line.nearest(&pv).simplify();
|
||||
trace!("line {} nearest to {}: {}", line, pv, n);
|
||||
match (n.x, n.y) {
|
||||
(Const(cx), Const(cy)) => Some(Point2::new(cx, cy)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
Intersection(r1, r2) => {
|
||||
None
|
||||
// r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region<Point2<Value>> for Region2 {
|
||||
fn singleton(value: Point2<Value>) -> Self {
|
||||
Region2::Singleton(value)
|
||||
}
|
||||
|
||||
fn contains(&self, p: &Point2<Value>) -> Option<bool> {
|
||||
self.nearest(p).map(|n| n.simplify() == p.clone().simplify())
|
||||
}
|
||||
|
||||
fn nearest(&self, p: &Point2<Value>) -> Option<Point2<Value>> {
|
||||
use Region2::*;
|
||||
match self {
|
||||
Empty => None,
|
||||
Full => Some(p.clone()),
|
||||
Singleton(n) => Some(n.clone()),
|
||||
Line(line) => Some(line.nearest(p)),
|
||||
Intersection(r1, r2) => {
|
||||
r1.clone().intersect((**r2).clone()).nearest(p)
|
||||
}
|
||||
/*Union(r1, r2) => {
|
||||
use nalgebra::distance;
|
||||
match (r1.nearest(p), r2.nearest(p)) {
|
||||
(None, None) => None,
|
||||
(Some(n), None) | (None, Some(n)) => Some(n),
|
||||
(Some(n1), Some(n2)) => Some({
|
||||
if distance(p, &n1) <= distance(p, &n2) {
|
||||
n1
|
||||
} else {
|
||||
n2
|
||||
}
|
||||
}),
|
||||
}
|
||||
}*/
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Region2 {
|
||||
/*
|
||||
pub fn union(r1: Region2, r2: Region2) -> Region2 {
|
||||
use Region2::*;
|
||||
match (r1, r2) {
|
||||
(Empty, r) | (r, Empty) => r,
|
||||
(Full, _) | (_, Full) => Full,
|
||||
(r1, r2) => Union(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
pub fn intersect(self, other: Region2) -> Region2 {
|
||||
use Region2::*;
|
||||
match (self, other) {
|
||||
(Empty, _) | (_, Empty) => Empty,
|
||||
(Full, r) | (r, Full) => r.clone(),
|
||||
(Singleton(n1), Singleton(n2)) => {
|
||||
if n1 == n2 {
|
||||
Singleton(n1)
|
||||
} else {
|
||||
Region2::intersection(Singleton(n1), Singleton(n2))
|
||||
}
|
||||
}
|
||||
(Singleton(n), o) | (o, Singleton(n)) => {
|
||||
if o.contains(&n).unwrap_or(false) {
|
||||
Singleton(n)
|
||||
} else {
|
||||
Region2::intersection(Singleton(n), o)
|
||||
}
|
||||
}
|
||||
(Intersection(r1, r2), o) | (o, Intersection(r1, r2)) => {
|
||||
r1.intersect(*r2).intersect(o)
|
||||
}
|
||||
(Line(l1), Line(l2)) => l1.intersect(&l2).simplify(),
|
||||
/*(Union(un1, un2), o) | (o, Union(un1, un2)) => {
|
||||
Self::union(un1.intersect(o), un2.intersect(o))
|
||||
}*/
|
||||
(r1, r2) => Intersection(Box::new(r1), Box::new(r2)),
|
||||
}
|
||||
}
|
||||
}
|
47
src/math/unknown.rs
Normal file
47
src/math/unknown.rs
Normal file
@ -0,0 +1,47 @@
|
||||
use std::collections::BTreeSet;
|
||||
use std::iter::FromIterator;
|
||||
use std::fmt;
|
||||
|
||||
use super::Scalar;
|
||||
|
||||
// an unknown variable with an id
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub struct Unknown(pub i64);
|
||||
|
||||
pub type UnknownSet = BTreeSet<Unknown>;
|
||||
|
||||
pub trait Unknowns {
|
||||
fn unknowns(&self) -> UnknownSet;
|
||||
fn has_unknowns(&self) -> bool;
|
||||
fn has_unknown(&self, u: Unknown) -> bool;
|
||||
}
|
||||
|
||||
impl Unknowns for Scalar {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
UnknownSet::new()
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
false
|
||||
}
|
||||
fn has_unknown(&self, _: Unknown) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl Unknowns for Unknown {
|
||||
fn unknowns(&self) -> UnknownSet {
|
||||
FromIterator::from_iter(Some(*self))
|
||||
}
|
||||
fn has_unknowns(&self) -> bool {
|
||||
true
|
||||
}
|
||||
fn has_unknown(&self, u: Unknown) -> bool {
|
||||
*self == u
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Unknown {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "u{}", self.0)
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user