Browse Source

actually finish if underconstrained

master
Alex Mikhalev 6 years ago
parent
commit
d9fbe9c264
  1. 52
      src/main.rs
  2. 41
      src/math.rs

52
src/main.rs

@ -1,3 +1,5 @@
#![feature(drain_filter)]
extern crate nalgebra; extern crate nalgebra;
#[macro_use] #[macro_use]
extern crate approx; extern crate approx;
@ -15,7 +17,7 @@ fn main() {
let origin = Point::new_ref(Var::new_single(Point2::new(0., 0.))); let origin = Point::new_ref(Var::new_single(Point2::new(0., 0.)));
let p1 = Point::new_ref(Var::new_full(Point2::new(1., 1.))); let p1 = Point::new_ref(Var::new_full(Point2::new(1., 1.)));
let p2 = Point::new_ref(Var::new_full(Point2::new(4., 4.))); let p2 = Point::new_ref(Var::new_full(Point2::new(4., 4.)));
let p3 = Point::new_ref(Var::new_single(Point2::new(2., 2.))); let p3 = Point::new_ref(Var::new_full(Point2::new(2., 2.)));
let mut points: Vec<PointRef> = vec![origin.clone(), p1.clone(), p2.clone(), p3.clone()]; let mut points: Vec<PointRef> = vec![origin.clone(), p1.clone(), p2.clone(), p3.clone()];
let print_points = |points: &Vec<PointRef>| { let print_points = |points: &Vec<PointRef>| {
println!( println!(
@ -29,23 +31,49 @@ fn main() {
p2: p1.clone(), p2: p1.clone(),
}; };
let c2 = relation::PointAngle::new_vertical(p1.clone(), p2.clone()); let c2 = relation::PointAngle::new_vertical(p1.clone(), p2.clone());
let c3 = relation::PointAngle::new_horizontal(p1.clone(), p2.clone()); let c3 = relation::PointAngle::new_horizontal(p2.clone(), p3.clone());
let c4 = relation::PointAngle::new_horizontal(p1.clone(), p3.clone()); // let c4 = relation::PointAngle::new_horizontal(p1.clone(), p3.clone());
let mut relations: Vec<Box<dyn Relation>> = let mut relations: Vec<Box<dyn Relation>> = vec![
vec![Box::new(c1), Box::new(c2), Box::new(c3), Box::new(c4)]; Box::new(c1),
let mut has_underconstrained = true; Box::new(c2),
while has_underconstrained { Box::new(c3), /*, Box::new(c4)*/
has_underconstrained = false; ];
for r in &relations { let mut constrained: Vec<Box<dyn Relation>> = Vec::new();
let mut any_underconstrained = true;
let mut any_constrained = true;
let mut any_overconstrained = false;
while any_underconstrained && any_constrained && !any_overconstrained {
any_underconstrained = false;
any_constrained = false;
let newly_constrained = relations.drain_filter(|r| {
let rr = r.resolve(); let rr = r.resolve();
if rr == ResolveResult::Underconstrained {
has_underconstrained = true;
}
println!("resolve result: {:?}", rr); println!("resolve result: {:?}", rr);
println!( println!(
"origin, p1, p2, p3:\n {:?}\n {:?}\n {:?}\n {:?}", "origin, p1, p2, p3:\n {:?}\n {:?}\n {:?}\n {:?}",
origin, p1, p2, p3 origin, p1, p2, p3
); );
match rr {
ResolveResult::Underconstrained => {
any_underconstrained = true;
false
}
ResolveResult::Constrained => {
any_constrained = true;
true
}
ResolveResult::Overconstrained => {
any_overconstrained = true;
true
}
}
});
constrained.extend(newly_constrained);
} }
if any_overconstrained {
println!("The system is overconstrained")
} else if any_underconstrained {
println!("Some constraints could not be solved")
} else {
println!("All constraints have been solved")
} }
} }

41
src/math.rs

@ -65,10 +65,29 @@ impl Line2 {
self.start + self.dir * Vec2::new(t, 0.) self.start + self.dir * Vec2::new(t, 0.)
} }
pub fn intersect(&self, other: &Line2) -> Option<Point2> { pub fn nearest(&self, p: &Point2) -> Point2 {
// if two lines are parallel // rotate angle 90 degrees
if relative_eq!((self.dir / other.dir).sin_angle(), 0.) { let perp_dir = self.dir * Rot2::from_cos_sin_unchecked(0., 1.);
return None; let perp = Line2::new(*p, perp_dir, Region1::Full);
if let Region2::Singleton(np) = self.intersect(&perp) {
np
} else {
panic!("Line2::nearest not found!");
}
}
pub fn intersect(&self, other: &Line2) -> Region2 {
// if the two lines are parallel...
let dirs = self.dir / other.dir;
if relative_eq!(dirs.sin_angle(), 0.) {
let starts = self.dir.to_rotation_matrix().inverse() * (other.start - self.start);
return if relative_eq!(starts.y, 0.) {
// and they are colinear
Region2::Line(self.clone())
} else {
// they are parallel and never intersect
Region2::Empty
};
} }
// TODO: respect extent // TODO: respect extent
let (a, b) = (self, other); let (a, b) = (self, other);
@ -80,7 +99,7 @@ impl Line2 {
b_v.sin_angle(), b_v.sin_angle(),
); );
let t_b = (a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s); let t_b = (a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s);
Some(b.evaluate(t_b)) Region2::Singleton(b.evaluate(t_b))
} }
} }
@ -114,12 +133,7 @@ impl Region<Point2> for Region2 {
Empty => None, Empty => None,
Full => Some(*p), Full => Some(*p),
Singleton(n) => Some(*n), Singleton(n) => Some(*n),
Line(line) => { Line(line) => Some(line.nearest(p)),
// rotate angle 90 degrees
let perp_dir = line.dir * Rot2::from_cos_sin_unchecked(0., 1.);
let perp = Line2::new(*p, perp_dir, Region1::Full);
perp.intersect(line)
}
Union(r1, r2) => { Union(r1, r2) => {
use nalgebra::distance; use nalgebra::distance;
match (r1.nearest(p), r2.nearest(p)) { match (r1.nearest(p), r2.nearest(p)) {
@ -158,10 +172,7 @@ impl Region2 {
Empty Empty
} }
} }
(Line(l1), Line(l2)) => match l1.intersect(l2) { (Line(l1), Line(l2)) => l1.intersect(l2),
Some(p) => Singleton(p),
None => Empty,
},
_ => unimplemented!(), _ => unimplemented!(),
} }
} }

Loading…
Cancel
Save