Browse Source

refactor and whatnot

master
Alex Mikhalev 6 years ago
parent
commit
82850849e7
  1. 1
      Cargo.lock
  2. 3
      Cargo.toml
  3. 61
      src/entity.rs
  4. 340
      src/main.rs
  5. 180
      src/math.rs
  6. 86
      src/relation.rs

1
Cargo.lock generated

@ -26,6 +26,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
name = "cad_rs" name = "cad_rs"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"approx 0.3.1 (registry+https://github.com/rust-lang/crates.io-index)",
"nalgebra 0.16.13 (registry+https://github.com/rust-lang/crates.io-index)", "nalgebra 0.16.13 (registry+https://github.com/rust-lang/crates.io-index)",
] ]

3
Cargo.toml

@ -5,4 +5,5 @@ authors = ["Alex Mikhalev <alexmikhalevalex@gmail.com>"]
edition = "2018" edition = "2018"
[dependencies] [dependencies]
nalgebra = "0.16" nalgebra = "0.16"
approx = "0.3"

61
src/entity.rs

@ -0,0 +1,61 @@
use std::cell::RefCell;
use std::rc::Rc;
use crate::math::{Line2, Point2, Region, Region1, Region2, Rot2, Scalar};
#[derive(Clone, Copy, Debug)]
pub struct Var<T: Clone, TRegion: Region<T>> {
value: T,
constraints: TRegion,
}
impl<T: Clone, TRegion: Region<T>> Var<T, TRegion> {
pub fn new(value: T, constraints: TRegion) -> Self {
Self { value, constraints }
}
pub fn new_full(value: T) -> Self {
Self::new(value, TRegion::full())
}
pub fn new_single(value: T) -> Self {
Self::new(value.clone(), TRegion::singleton(value))
}
pub fn constraints(&self) -> &TRegion {
&self.constraints
}
pub fn reconstrain(&mut self, new_constraints: TRegion) -> bool {
self.constraints = new_constraints;
if let Some(n) = self.constraints.nearest(&self.value) {
self.value = n;
true
} else {
false
}
}
}
type ScalarVar = Var<Scalar, Region1>;
type PointVar = Var<Point2, Region2>;
#[derive(Debug)]
pub struct Point {
pub pos: PointVar,
}
pub type PointRef = Rc<RefCell<Point>>;
impl Point {
pub fn new_ref(pos: PointVar) -> PointRef {
Rc::new(RefCell::new(Point { pos }))
}
}
struct Line {
p1: PointRef,
p2: PointRef,
len: ScalarVar,
dir: ScalarVar,
}

340
src/main.rs

@ -1,340 +1,10 @@
extern crate nalgebra; extern crate nalgebra;
#[macro_use]
extern crate approx;
mod math { mod math;
mod entity;
pub type Scalar = f64; mod relation;
pub type Vec2 = nalgebra::Vector2<Scalar>;
pub type Point2 = nalgebra::Point2<Scalar>;
pub type Rot2 = nalgebra::UnitComplex<Scalar>;
pub trait Region<T> {
fn full() -> Self;
fn singleton(value: T) -> Self;
fn nearest(&self, value: &T) -> Option<T>;
fn contains(&self, value: &T) -> bool;
}
#[derive(Clone, Debug)]
pub enum Region1 {
Empty,
Singleton(Scalar),
Range(Scalar, Scalar),
Union(Box<Region1>, Box<Region1>),
Full,
}
impl Region<Scalar> for Region1 {
fn full() -> Self {
Region1::Full
}
fn singleton(value: Scalar) -> Self {
Region1::Singleton(value)
}
fn contains(&self, n: &Scalar) -> bool {
use Region1::*;
match self {
Empty => false,
Singleton(n1) => *n1 == *n,
Range(l, u) => *l <= *n && *n <= *u,
Union(r1, r2) => r1.contains(n) || r2.contains(n),
Full => true,
}
}
fn nearest(&self, n: &Scalar) -> Option<Scalar> {
unimplemented!();
}
}
// line starting at start, point at angle dir, with range extent
// ie. start + (cos dir, sin dir) * t for t in extent
#[derive(Clone, Debug)]
pub struct Line2 {
start: Point2,
dir: Rot2,
extent: Region1,
}
impl Line2 {
pub fn new(start: Point2, dir: Rot2, extent: Region1) -> Self {
Self { start, dir, extent }
}
pub fn evaluate(&self, t: Scalar) -> Point2 {
self.start + self.dir * Vec2::new(t, 0.)
}
pub fn intersect(&self, other: &Line2) -> Option<Point2> {
// if two lines are parallel
// TODO: epsilon?
if (self.dir * other.dir).sin_angle() == 0. {
return None;
}
// TODO: respect extent
let (a, b) = (self, other);
let (a_0, a_v, b_0, b_v) = (a.start, a.dir, b.start, b.dir);
let (a_c, a_s, b_c, b_s) = (
a_v.cos_angle(),
a_v.sin_angle(),
b_v.cos_angle(),
b_v.sin_angle(),
);
let t_b =
(a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s);
Some(b.evaluate(t_b))
}
}
#[derive(Clone, Debug)]
pub enum Region2 {
Empty,
// single point at 0
Singleton(Point2),
Line(Line2),
Union(Box<Region2>, Box<Region2>),
Full,
}
impl Region<Point2> for Region2 {
fn full() -> Self {
Region2::Full
}
fn singleton(value: Point2) -> Self {
Region2::Singleton(value)
}
fn contains(&self, p: &Point2) -> bool {
use Region2::*;
self.nearest(p).map_or(false, |n| n == *p) // TODO: epsilon?
// match self {
// Empty => false,
// Singleton(n1) => *n1 == n,
// Line(_, _, _) => unimplemented!(),
// Union(r1, r2) => r1.contains(n) || r2.contains(n),
// Full => true,
// }
}
fn nearest(&self, p: &Point2) -> Option<Point2> {
use Region2::*;
match self {
Empty => None,
Full => Some(*p),
Singleton(n) => Some(*n),
Line(line) => {
// rotate angle 90 degrees
let perp_dir = line.dir * Rot2::from_cos_sin_unchecked(0., 1.);
let perp = Line2::new(*p, perp_dir, Region1::Full);
perp.intersect(line)
}
Union(r1, r2) => {
use nalgebra::distance;
match (r1.nearest(p), r2.nearest(p)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(p, &n1) <= distance(p, &n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
impl Region2 {
pub fn intersect(&self, other: &Region2) -> Region2 {
use Region2::*;
match (self, other) {
(Empty, _) | (_, Empty) => Empty,
(Full, r @ _) | (r @ _, Full) => r.clone(),
(Singleton(n1), Singleton(n2)) => {
if n1 == n2 {
Singleton(*n1)
} else {
Empty
}
}
(Singleton(n), o @ _) | (o @ _, Singleton(n)) => {
if o.contains(n) {
Singleton(*n)
} else {
Empty
}
}
(Line(l1), Line(l2)) => match l1.intersect(l2) {
Some(p) => Singleton(p),
None => Empty,
},
_ => unimplemented!(),
}
}
}
}
mod entity {
use std::cell::RefCell;
use std::rc::Rc;
use crate::math::{Line2, Point2, Region, Region1, Region2, Rot2, Scalar};
#[derive(Clone, Copy, Debug)]
pub struct Var<T: Clone, TRegion: Region<T>> {
value: T,
constraints: TRegion,
}
impl<T: Clone, TRegion: Region<T>> Var<T, TRegion> {
pub fn new(value: T, constraints: TRegion) -> Self {
Self { value, constraints }
}
pub fn new_full(value: T) -> Self {
Self::new(value, TRegion::full())
}
pub fn new_single(value: T) -> Self {
Self::new(value.clone(), TRegion::singleton(value))
}
pub fn constraints(&self) -> &TRegion {
&self.constraints
}
pub fn reconstrain(&mut self, new_constraints: TRegion) -> bool {
self.constraints = new_constraints;
if let Some(n) = self.constraints.nearest(&self.value) {
self.value = n;
true
} else {
false
}
}
}
type ScalarVar = Var<Scalar, Region1>;
type PointVar = Var<Point2, Region2>;
#[derive(Debug)]
pub struct Point {
pub pos: PointVar,
}
pub type PointRef = Rc<RefCell<Point>>;
impl Point {
pub fn new_ref(pos: PointVar) -> PointRef {
Rc::new(RefCell::new(Point { pos }))
}
}
struct Line {
p1: PointRef,
p2: PointRef,
len: ScalarVar,
dir: ScalarVar,
}
}
mod relation {
use crate::entity::{Point as PointEntity, PointRef};
use crate::math::{Line2, Point2, Region, Region1, Region2, Rot2, Scalar};
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ResolveResult {
Underconstrained,
Constrained,
Overconstrained,
}
impl ResolveResult {
pub fn from_r2(r: &Region2) -> ResolveResult {
use Region2::*;
match r {
Empty => ResolveResult::Overconstrained,
Singleton(_) => ResolveResult::Constrained,
_ => ResolveResult::Constrained,
}
}
}
pub trait Relation {
fn resolve(&self) -> ResolveResult;
}
pub struct Coincident {
pub p1: PointRef,
pub p2: PointRef,
}
impl Relation for Coincident {
fn resolve(&self) -> ResolveResult {
use Region2::*;
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
let r = { p1.pos.constraints().intersect(p2.pos.constraints()) };
p1.pos.reconstrain(r.clone());
p2.pos.reconstrain(r.clone());
ResolveResult::from_r2(&r)
}
}
pub struct PointAngle {
pub p1: PointRef,
pub p2: PointRef,
pub angle: Rot2,
}
impl PointAngle {
pub fn new(p1: PointRef, p2: PointRef, angle: Rot2) -> Self {
Self { p1, p2, angle }
}
pub fn new_horizontal(p1: PointRef, p2: PointRef) -> Self {
Self::new(p1, p2, Rot2::from_cos_sin_unchecked(1., 0.))
}
pub fn new_vertical(p1: PointRef, p2: PointRef) -> Self {
Self::new(p1, p2, Rot2::from_cos_sin_unchecked(0., 1.))
}
}
impl Relation for PointAngle {
fn resolve(&self) -> ResolveResult {
use Region2::*;
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
let constrain_line = |p1: &Point2, p2: &mut PointEntity| {
let line = Region2::Line(Line2::new(p1.clone(), self.angle, Region1::Full));
let new_constraint = p2.pos.constraints().intersect(&line);
p2.pos.reconstrain(new_constraint);
ResolveResult::from_r2(p2.pos.constraints())
};
match (&mut p1.pos.constraints(), &mut p2.pos.constraints()) {
(Empty, _) | (_, Empty) => ResolveResult::Overconstrained,
(Singleton(p1), Singleton(p2)) => {
if p1.x == p2.x {
ResolveResult::Constrained
} else {
ResolveResult::Overconstrained
}
}
(Singleton(p), _) => constrain_line(p, &mut *p2),
(_, Singleton(p)) => constrain_line(p, &mut *p1),
_ => ResolveResult::Underconstrained,
}
}
}
}
fn main() { fn main() {
use entity::{Point, PointRef, Var}; use entity::{Point, PointRef, Var};

180
src/math.rs

@ -0,0 +1,180 @@
pub type Scalar = f64;
pub const EPSILON: Scalar = std::f64::EPSILON * 100.;
pub type Vec2 = nalgebra::Vector2<Scalar>;
pub type Point2 = nalgebra::Point2<Scalar>;
pub type Rot2 = nalgebra::UnitComplex<Scalar>;
pub trait Region<T> {
fn full() -> Self;
fn singleton(value: T) -> Self;
fn nearest(&self, value: &T) -> Option<T>;
fn contains(&self, value: &T) -> bool;
}
#[derive(Clone, Debug)]
pub enum Region1 {
Empty,
Singleton(Scalar),
Range(Scalar, Scalar),
Union(Box<Region1>, Box<Region1>),
Full,
}
impl Region<Scalar> for Region1 {
fn full() -> Self {
Region1::Full
}
fn singleton(value: Scalar) -> Self {
Region1::Singleton(value)
}
fn contains(&self, n: &Scalar) -> bool {
use Region1::*;
match self {
Empty => false,
Singleton(n1) => *n1 == *n,
Range(l, u) => *l <= *n && *n <= *u,
Union(r1, r2) => r1.contains(n) || r2.contains(n),
Full => true,
}
}
fn nearest(&self, n: &Scalar) -> Option<Scalar> {
unimplemented!();
}
}
// line starting at start, point at angle dir, with range extent
// ie. start + (cos dir, sin dir) * t for t in extent
#[derive(Clone, Debug)]
pub struct Line2 {
start: Point2,
dir: Rot2,
extent: Region1,
}
impl Line2 {
pub fn new(start: Point2, dir: Rot2, extent: Region1) -> Self {
Self { start, dir, extent }
}
pub fn evaluate(&self, t: Scalar) -> Point2 {
self.start + self.dir * Vec2::new(t, 0.)
}
pub fn intersect(&self, other: &Line2) -> Option<Point2> {
// if two lines are parallel
// TODO: epsilon?
if (self.dir * other.dir).sin_angle() == 0. {
return None;
}
// TODO: respect extent
let (a, b) = (self, other);
let (a_0, a_v, b_0, b_v) = (a.start, a.dir, b.start, b.dir);
let (a_c, a_s, b_c, b_s) = (
a_v.cos_angle(),
a_v.sin_angle(),
b_v.cos_angle(),
b_v.sin_angle(),
);
let t_b =
(a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s);
Some(b.evaluate(t_b))
}
}
#[derive(Clone, Debug)]
pub enum Region2 {
Empty,
// single point at 0
Singleton(Point2),
Line(Line2),
Union(Box<Region2>, Box<Region2>),
Full,
}
impl Region<Point2> for Region2 {
fn full() -> Self {
Region2::Full
}
fn singleton(value: Point2) -> Self {
Region2::Singleton(value)
}
fn contains(&self, p: &Point2) -> bool {
use Region2::*;
self.nearest(p).map_or(false, |n| n == *p) // TODO: epsilon?
// match self {
// Empty => false,
// Singleton(n1) => *n1 == n,
// Line(_, _, _) => unimplemented!(),
// Union(r1, r2) => r1.contains(n) || r2.contains(n),
// Full => true,
// }
}
fn nearest(&self, p: &Point2) -> Option<Point2> {
use Region2::*;
match self {
Empty => None,
Full => Some(*p),
Singleton(n) => Some(*n),
Line(line) => {
// rotate angle 90 degrees
let perp_dir = line.dir * Rot2::from_cos_sin_unchecked(0., 1.);
let perp = Line2::new(*p, perp_dir, Region1::Full);
perp.intersect(line)
}
Union(r1, r2) => {
use nalgebra::distance;
match (r1.nearest(p), r2.nearest(p)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(p, &n1) <= distance(p, &n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
impl Region2 {
pub fn intersect(&self, other: &Region2) -> Region2 {
use Region2::*;
match (self, other) {
(Empty, _) | (_, Empty) => Empty,
(Full, r @ _) | (r @ _, Full) => r.clone(),
(Singleton(n1), Singleton(n2)) => {
if n1 == n2 {
Singleton(*n1)
} else {
Empty
}
}
(Singleton(n), o @ _) | (o @ _, Singleton(n)) => {
if o.contains(n) {
Singleton(*n)
} else {
Empty
}
}
(Line(l1), Line(l2)) => match l1.intersect(l2) {
Some(p) => Singleton(p),
None => Empty,
},
_ => unimplemented!(),
}
}
}

86
src/relation.rs

@ -0,0 +1,86 @@
use crate::entity::{Point as PointEntity, PointRef};
use crate::math::{Line2, Point2, Region, Region1, Region2, Rot2, Scalar};
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ResolveResult {
Underconstrained,
Constrained,
Overconstrained,
}
impl ResolveResult {
pub fn from_r2(r: &Region2) -> ResolveResult {
use Region2::*;
match r {
Empty => ResolveResult::Overconstrained,
Singleton(_) => ResolveResult::Constrained,
_ => ResolveResult::Constrained,
}
}
}
pub trait Relation {
fn resolve(&self) -> ResolveResult;
}
pub struct Coincident {
pub p1: PointRef,
pub p2: PointRef,
}
impl Relation for Coincident {
fn resolve(&self) -> ResolveResult {
use Region2::*;
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
let r = { p1.pos.constraints().intersect(p2.pos.constraints()) };
p1.pos.reconstrain(r.clone());
p2.pos.reconstrain(r.clone());
ResolveResult::from_r2(&r)
}
}
pub struct PointAngle {
pub p1: PointRef,
pub p2: PointRef,
pub angle: Rot2,
}
impl PointAngle {
pub fn new(p1: PointRef, p2: PointRef, angle: Rot2) -> Self {
Self { p1, p2, angle }
}
pub fn new_horizontal(p1: PointRef, p2: PointRef) -> Self {
Self::new(p1, p2, Rot2::from_cos_sin_unchecked(1., 0.))
}
pub fn new_vertical(p1: PointRef, p2: PointRef) -> Self {
Self::new(p1, p2, Rot2::from_cos_sin_unchecked(0., 1.))
}
}
impl Relation for PointAngle {
fn resolve(&self) -> ResolveResult {
use Region2::*;
let (mut p1, mut p2) = (self.p1.borrow_mut(), self.p2.borrow_mut());
let constrain_line = |p1: &Point2, p2: &mut PointEntity| {
let line = Region2::Line(Line2::new(p1.clone(), self.angle, Region1::Full));
let new_constraint = p2.pos.constraints().intersect(&line);
p2.pos.reconstrain(new_constraint);
ResolveResult::from_r2(p2.pos.constraints())
};
match (&mut p1.pos.constraints(), &mut p2.pos.constraints()) {
(Empty, _) | (_, Empty) => ResolveResult::Overconstrained,
(Singleton(p1), Singleton(p2)) => {
if p1.x == p2.x {
ResolveResult::Constrained
} else {
ResolveResult::Overconstrained
}
}
(Singleton(p), _) => constrain_line(p, &mut *p2),
(_, Singleton(p)) => constrain_line(p, &mut *p1),
_ => ResolveResult::Underconstrained,
}
}
}
Loading…
Cancel
Save