Browse Source

move solver to it's own file

master
Alex Mikhalev 6 years ago
parent
commit
20f96ede2d
  1. 903
      src/math.rs
  2. 217
      src/math/mod.rs
  3. 684
      src/math/solver.rs

903
src/math.rs

@ -1,903 +0,0 @@
pub type Scalar = f64;
pub type Vec2 = nalgebra::Vector2<Scalar>;
pub type Point2 = nalgebra::Point2<Scalar>;
pub type Rot2 = nalgebra::UnitComplex<Scalar>;
pub trait Region<T> {
fn full() -> Self;
fn singleton(value: T) -> Self;
fn nearest(&self, value: &T) -> Option<T>;
fn contains(&self, value: &T) -> bool;
}
#[derive(Clone, Debug)]
pub enum Region1 {
Empty,
Singleton(Scalar),
Range(Scalar, Scalar),
Union(Box<Region1>, Box<Region1>),
Full,
}
impl Region<Scalar> for Region1 {
fn full() -> Self {
Region1::Full
}
fn singleton(value: Scalar) -> Self {
Region1::Singleton(value)
}
fn contains(&self, n: &Scalar) -> bool {
use Region1::*;
match self {
Empty => false,
Singleton(n1) => relative_eq!(n1, n),
Range(l, u) => *l <= *n && *n <= *u,
Union(r1, r2) => r1.contains(n) || r2.contains(n),
Full => true,
}
}
fn nearest(&self, s: &Scalar) -> Option<Scalar> {
use Region1::*;
match self {
Empty => None,
Full => Some(*s),
Singleton(n) => Some(*n),
Range(l, u) => match (l < s, s < u) {
(true, true) => Some(*s),
(true, false) => Some(*u),
(false, true) => Some(*l),
_ => None,
},
Union(r1, r2) => {
let distance = |a: Scalar, b: Scalar| (a - b).abs();
match (r1.nearest(s), r2.nearest(s)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(*s, n1) <= distance(*s, n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
// line starting at start, point at angle dir, with range extent
// ie. start + (cos dir, sin dir) * t for t in extent
#[derive(Clone, Debug)]
pub struct Line2 {
start: Point2,
dir: Rot2,
extent: Region1,
}
impl Line2 {
pub fn new(start: Point2, dir: Rot2, extent: Region1) -> Self {
Self { start, dir, extent }
}
pub fn evaluate(&self, t: Scalar) -> Point2 {
self.start + self.dir * Vec2::new(t, 0.)
}
pub fn nearest(&self, p: &Point2) -> Point2 {
// rotate angle 90 degrees
let perp_dir = self.dir * Rot2::from_cos_sin_unchecked(0., 1.);
let perp = Line2::new(*p, perp_dir, Region1::Full);
if let Region2::Singleton(np) = self.intersect(&perp) {
np
} else {
panic!("Line2::nearest not found!");
}
}
pub fn intersect(&self, other: &Line2) -> Region2 {
// if the two lines are parallel...
let dirs = self.dir / other.dir;
if relative_eq!(dirs.sin_angle(), 0.) {
let starts = self.dir.to_rotation_matrix().inverse() * (other.start - self.start);
return if relative_eq!(starts.y, 0.) {
// and they are colinear
Region2::Line(self.clone())
} else {
// they are parallel and never intersect
Region2::Empty
};
}
// TODO: respect extent
let (a, b) = (self, other);
let (a_0, a_v, b_0, b_v) = (a.start, a.dir, b.start, b.dir);
let (a_c, a_s, b_c, b_s) = (
a_v.cos_angle(),
a_v.sin_angle(),
b_v.cos_angle(),
b_v.sin_angle(),
);
let t_b = (a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s);
Region2::Singleton(b.evaluate(t_b))
}
}
#[derive(Clone, Debug)]
pub enum Region2 {
Empty,
// single point at 0
Singleton(Point2),
Line(Line2),
#[allow(dead_code)]
Union(Box<Region2>, Box<Region2>),
Full,
}
impl Region<Point2> for Region2 {
fn full() -> Self {
Region2::Full
}
fn singleton(value: Point2) -> Self {
Region2::Singleton(value)
}
fn contains(&self, p: &Point2) -> bool {
self.nearest(p).map_or(false, |n| relative_eq!(n, p))
}
fn nearest(&self, p: &Point2) -> Option<Point2> {
use Region2::*;
match self {
Empty => None,
Full => Some(*p),
Singleton(n) => Some(*n),
Line(line) => Some(line.nearest(p)),
Union(r1, r2) => {
use nalgebra::distance;
match (r1.nearest(p), r2.nearest(p)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(p, &n1) <= distance(p, &n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
impl Region2 {
pub fn union(r1: Region2, r2: Region2) -> Region2 {
use Region2::*;
match (r1, r2) {
(Empty, r) | (r, Empty) => r,
(Full, _) | (_, Full) => Full,
(r1, r2) => Union(Box::new(r1), Box::new(r2)),
}
}
pub fn intersect(&self, other: &Region2) -> Region2 {
use Region2::*;
match (self, other) {
(Empty, _) | (_, Empty) => Empty,
(Full, r) | (r, Full) => r.clone(),
(Singleton(n1), Singleton(n2)) => {
if n1 == n2 {
Singleton(*n1)
} else {
Empty
}
}
(Singleton(n), o) | (o, Singleton(n)) => {
if o.contains(n) {
Singleton(*n)
} else {
Empty
}
}
(Line(l1), Line(l2)) => l1.intersect(l2),
(Union(un1, un2), o) | (o, Union(un1, un2)) => {
Self::union(un1.intersect(o), un2.intersect(o))
}
}
}
}
pub mod solve {
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
use std::iter::FromIterator;
use crate::math::Scalar;
// an unknown variable with an id
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct Unknown(i64);
type UnknownSet = BTreeSet<Unknown>;
trait Unknowns {
fn unknowns(&self) -> UnknownSet;
fn has_unknowns(&self) -> bool;
fn has_unknown(&self, u: Unknown) -> bool;
}
impl Unknowns for Scalar {
fn unknowns(&self) -> UnknownSet {
UnknownSet::new()
}
fn has_unknowns(&self) -> bool {
false
}
fn has_unknown(&self, _: Unknown) -> bool {
false
}
}
impl Unknowns for Unknown {
fn unknowns(&self) -> UnknownSet {
FromIterator::from_iter(Some(*self))
}
fn has_unknowns(&self) -> bool {
true
}
fn has_unknown(&self, u: Unknown) -> bool {
*self == u
}
}
impl fmt::Display for Unknown {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "u{}", self.0)
}
}
#[derive(Clone, Debug, PartialEq)]
enum Expr {
Unkn(Unknown),
Const(Scalar),
Sum(Exprs),
Neg(Box<Expr>),
Product(Exprs),
Div(Box<Expr>, Box<Expr>),
}
type Exprs = Vec<Expr>;
impl Unknowns for Exprs {
fn unknowns(&self) -> UnknownSet {
self.iter().flat_map(|e: &Expr| e.unknowns()).collect()
}
fn has_unknowns(&self) -> bool {
self.iter().any(|e: &Expr| e.has_unknowns())
}
fn has_unknown(&self, u: Unknown) -> bool {
self.iter().any(|e: &Expr| e.has_unknown(u))
}
}
fn write_separated_exprs(es: &Exprs, f: &mut fmt::Formatter, sep: &str) -> fmt::Result {
let mut is_first = true;
for e in es {
if is_first {
is_first = false;
} else {
write!(f, "{}", sep)?
}
write!(f, "({})", e)?
}
Ok(())
}
fn remove_common_terms(l: &mut Vec<Expr>, r: &mut Vec<Expr>) -> Vec<Expr> {
let common: Vec<_> = l.drain_filter(|e| r.contains(e)).collect();
common.iter().for_each(|e| {
r.remove_item(e);
});
common
}
fn remove_term(terms: &mut Vec<Expr>, term: &Expr) -> Option<Expr> {
terms.remove_item(term)
}
fn sum_fold(l: Expr, r: Expr) -> Expr {
use itertools::Itertools;
use Expr::*;
match (l, r) {
(Const(lc), Const(rc)) => Const(lc + rc),
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 0.) => o,
(Product(mut l), Product(mut r)) => {
let comm = remove_common_terms(&mut l, &mut r);
Expr::new_product(Sum(comm), Expr::new_sum(Product(l), Product(r))).simplify()
}
(Product(mut l), r) | (r, Product(mut l)) => {
let comm = remove_term(&mut l, &r);
match comm {
Some(_) => {
Expr::new_product(r, Expr::new_sum(Product(l), Const(1.))).simplify()
}
None => Expr::new_sum(Product(l), r),
}
}
(l, r) => Expr::new_sum(l, r),
}
}
fn group_sum(es: Exprs) -> Exprs {
use Expr::*;
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
for e in es {
let unkns = e.unknowns();
match common.get_mut(&unkns) {
None => {
match e {
Const(c) if relative_eq!(c, 0.) => (),
e => {
common.insert(unkns, e);
}
};
}
Some(existing) => {
match existing {
Sum(ref mut es) => {
// already failed at merging, so just add it to the list
es.push(e);
}
other => {
*other = sum_fold(other.clone(), e);
}
};
}
};
}
common.into_iter().map(|(_, v)| v).collect()
}
fn product_fold(l: Expr, r: Expr) -> Expr {
use itertools::Itertools;
use Expr::*;
match (l, r) {
(Const(lc), Const(rc)) => Const(lc * rc),
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 1.) => o,
(Div(num, den), mul) | (mul, Div(num, den)) => {
if mul == *den {
*num
} else {
Expr::Div(Box::new(Expr::Product(vec![*num, mul])), den).simplify()
}
}
(l, r) => Expr::new_product(l, r),
}
}
fn group_product(es: Exprs) -> Exprs {
use Expr::*;
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
for e in es {
let unkns = e.unknowns();
match common.get_mut(&unkns) {
None => {
match e {
Const(c) if relative_eq!(c, 1.) => (),
e => {
common.insert(unkns, e);
}
};
}
Some(existing) => {
match existing {
Sum(ref mut es) => {
// already failed at merging, so just add it to the list
es.push(e);
}
other => *other = product_fold(other.clone(), e),
};
}
};
}
common.into_iter().map(|(_, v)| v).collect()
}
fn distribute_product_sums(mut es: Exprs) -> Expr {
trace!("distribute_product_sums: {}", Product(es.clone()));
use itertools::Itertools;
use Expr::*;
let sums = es
.drain_filter(|e| match e {
Sum(_) => true,
_ => false,
})
.map(|e| {
trace!("sum in product: {}", e);
match e {
Sum(es) => es,
_ => unreachable!(),
}
});
let products: Vec<_> = sums.multi_cartesian_product().collect();
if products.is_empty() {
trace!("no sums to distribute");
return Product(es);
}
let sums = products
.into_iter()
.map(|mut prod| {
prod.extend(es.clone());
trace!("prod: {}", Product(prod.clone()));
Product(prod)
})
.collect();
Sum(sums)
}
impl Unknowns for Expr {
fn unknowns(&self) -> UnknownSet {
use Expr::*;
match self {
Unkn(u) => u.unknowns(),
Const(_) => UnknownSet::default(),
Sum(es) | Product(es) => es.unknowns(),
Div(l, r) => l.unknowns().union(&r.unknowns()).cloned().collect(),
Neg(e) => e.unknowns(),
}
}
fn has_unknowns(&self) -> bool {
use Expr::*;
match self {
Unkn(u) => u.has_unknowns(),
Const(_) => false,
Sum(es) | Product(es) => es.has_unknowns(),
Div(l, r) => l.has_unknowns() || r.has_unknowns(),
Neg(e) => e.has_unknowns(),
}
}
fn has_unknown(&self, u: Unknown) -> bool {
use Expr::*;
match self {
Unkn(u1) => u1.has_unknown(u),
Const(_) => false,
Sum(es) | Product(es) => es.has_unknown(u),
Div(l, r) => l.has_unknown(u) || r.has_unknown(u),
Neg(e) => e.has_unknown(u),
}
}
}
impl Expr {
fn new_sum(e1: Expr, e2: Expr) -> Expr {
Expr::Sum(vec![e1, e2])
}
fn new_product(e1: Expr, e2: Expr) -> Expr {
Expr::Product(vec![e1, e2])
}
fn new_neg(e1: Expr) -> Expr {
Expr::Neg(Box::new(e1))
}
fn new_div(num: Expr, den: Expr) -> Expr {
Expr::Div(Box::new(num), Box::new(den))
}
fn new_minus(e1: Expr, e2: Expr) -> Expr {
Expr::Sum(vec![e1, Expr::new_neg(e2)])
}
fn new_inv(den: Expr) -> Expr {
Expr::new_div(Expr::Const(1.), den)
}
fn is_zero(&self) -> bool {
use Expr::*;
match self {
Const(c) => relative_eq!(*c, 0.),
_ => false,
}
}
fn is_one(&self) -> bool {
use Expr::*;
match self {
Const(c) => relative_eq!(*c, 1.),
_ => false,
}
}
fn simplify(self) -> Expr {
use Expr::*;
match self {
Sum(es) => {
let mut new_es: Vec<_> = es
.into_iter()
.map(|e| e.simplify())
.flat_map(|e| match e {
Sum(more_es) => more_es,
other => vec![other],
})
.collect();
let pre_new_es = new_es.clone();
new_es = group_sum(new_es);
trace!(
"simplify sum {} => {}",
Sum(pre_new_es),
Sum(new_es.clone())
);
match new_es.len() {
0 => Const(0.), // none
1 => new_es.into_iter().next().unwrap(), // one
_ => Sum(new_es), // many
}
}
Product(es) => {
let new_es: Vec<_> = es
.into_iter()
.map(|e| e.simplify())
.flat_map(|e| match e {
Product(more_es) => more_es,
other => vec![other],
})
.collect();
let pre_new_es = new_es.clone();
let new_es = group_product(new_es);
trace!(
"simplify product {} => {}",
Product(pre_new_es),
Product(new_es.clone())
);
match new_es.len() {
0 => Const(1.), // none
1 => new_es.into_iter().next().unwrap(), // one
_ => Product(new_es), // many
}
}
Neg(mut v) => {
*v = v.simplify();
trace!("simplify neg {}", Neg(v.clone()));
match v {
box Const(c) => Const(-c),
box Neg(v) => *v,
e => Product(vec![Const(-1.), *e]),
}
}
Div(mut num, mut den) => {
*num = num.simplify();
*den = den.simplify();
trace!("simplify div {}", Div(num.clone(), den.clone()));
match (num, den) {
(box Const(num), box Const(den)) => Const(num / den),
(num, box Const(den)) => {
if relative_eq!(den, 1.) {
*num
} else {
Expr::new_product(*num, Const(1. / den))
}
}
(num, box Div(dennum, denden)) => {
Div(Box::new(Product(vec![*num, *denden])), dennum).simplify()
}
(box Product(mut es), box den) => match es.remove_item(&den) {
Some(_) => Product(es),
None => Expr::new_div(Product(es), den),
},
(num, den) => {
if num == den {
Expr::Const(1.)
} else {
Div(num, den)
}
}
}
}
e => e,
}
}
fn distribute(self) -> Expr {
use Expr::*;
trace!("distribute {}", self);
match self {
Sum(mut es) => {
for e in &mut es {
*e = e.clone().distribute();
}
Sum(es)
}
Product(es) => distribute_product_sums(es),
Div(mut num, mut den) => {
*num = num.distribute();
*den = den.distribute();
match (num, den) {
(box Sum(es), box den) => Sum(es
.into_iter()
.map(|e| Expr::new_div(e, den.clone()))
.collect()),
(mut num, mut den) => Div(num, den),
}
}
Neg(v) => match v {
// box Sum(mut l, mut r) => {
// *l = Neg(l.clone()).distribute();
// *r = Neg(r.clone()).distribute();
// Sum(l, r)
// }
// box Product(mut l, r) => {
// *l = Neg(l.clone()).distribute();
// Product(l, r)
// }
box Neg(v) => v.distribute(),
box Div(mut num, mut den) => {
*num = Neg(num.clone()).distribute();
*den = Neg(den.clone()).distribute();
Div(num, den)
}
e => Neg(e),
},
e => e,
}
}
}
impl fmt::Display for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use Expr::*;
match self {
Unkn(u) => write!(f, "{}", u),
Const(c) => write!(f, "{}", c),
Sum(es) => write_separated_exprs(es, f, " + "),
Product(es) => write_separated_exprs(es, f, " * "),
Div(num, den) => write!(f, "({}) / ({})", num, den),
Neg(e) => write!(f, "-({})", e),
}
}
}
#[derive(Clone, Debug, PartialEq)]
struct Eqn(Expr, Expr);
impl Unknowns for Eqn {
fn unknowns(&self) -> UnknownSet {
self.0
.unknowns()
.union(&self.1.unknowns())
.cloned()
.collect()
}
fn has_unknowns(&self) -> bool {
self.0.has_unknowns() || self.1.has_unknowns()
}
fn has_unknown(&self, u: Unknown) -> bool {
self.0.has_unknown(u) || self.1.has_unknown(u)
}
}
fn ord_by_unkn(a: Expr, b: Expr, u: Unknown) -> Option<(Expr, Expr)> {
if a.has_unknown(u) {
Some((a, b))
} else if b.has_unknown(u) {
Some((b, a))
} else {
None
}
}
impl Eqn {
fn simplify(self) -> Eqn {
Eqn(self.0.simplify(), self.1.simplify())
}
fn solve(&self, for_u: Unknown) -> Option<Expr> {
use Expr::*;
if !self.has_unknown(for_u) {
return None;
}
let (l, r) = (
self.0
.clone() /*.distribute()*/
.simplify(),
self.1
.clone() /*.distribute()*/
.simplify(),
);
let (mut l, mut r) = ord_by_unkn(l, r, for_u)?;
loop {
trace!("solve: {} == {}", l, r);
let (new_l, new_r): (Expr, Expr) = match l {
Unkn(u) => return if u == for_u { Some(r.simplify()) } else { None },
Sum(es) => {
let (us, not_us): (Vec<_>, Vec<_>) =
es.into_iter().partition(|e| e.has_unknown(for_u));
if us.len() != 1 {
return None;
}
(
Sum(us).simplify(),
Expr::new_minus(r, Sum(not_us)).simplify(),
)
}
Product(es) => {
let (us, not_us): (Vec<_>, Vec<_>) =
es.into_iter().partition(|e| e.has_unknown(for_u));
if us.len() != 1 {
return None;
}
(
Product(us).simplify(),
Expr::new_div(r, Product(not_us)).simplify(),
)
}
Neg(v) => (*v, Expr::new_neg(r)),
Div(num, den) => {
let (nu, du) = (num.has_unknown(for_u), den.has_unknown(for_u));
match (nu, du) {
(true, false) => (*num, Expr::new_product(r, *den)),
(false, true) => (Expr::new_product(r, *den), *num),
(true, true) => return None, // TODO: simplify
(false, false) => return None,
}
}
Const(_) => return None,
_ => return None,
};
l = new_l;
r = new_r;
}
}
}
impl fmt::Display for Eqn {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} == {}", self.0, self.1)
}
}
#[derive(Clone, Debug, PartialEq)]
struct Eqns(Vec<Eqn>);
impl Unknowns for Eqns {
fn unknowns(&self) -> UnknownSet {
self.0.iter().flat_map(|eqn: &Eqn| eqn.unknowns()).collect()
}
fn has_unknowns(&self) -> bool {
self.0.iter().any(|eqn: &Eqn| eqn.has_unknowns())
}
fn has_unknown(&self, u: Unknown) -> bool {
self.0.iter().any(|eqn: &Eqn| eqn.has_unknown(u))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_unknowns() {
let u1 = Unknown(1);
let u2 = Unknown(2);
let u3 = Unknown(3);
assert!(u1.has_unknowns());
assert!(u2.has_unknowns());
assert!(u1.has_unknown(u1));
assert!(!u1.has_unknown(u2));
assert!(u1.unknowns().contains(&u1));
assert!(!u2.unknowns().contains(&u1));
let e1 = Expr::new_minus(Expr::Unkn(u1), Expr::Unkn(u2));
assert!(e1.has_unknowns());
assert!(e1.has_unknown(u1));
assert!(e1.has_unknown(u2));
assert!(!e1.has_unknown(u3));
assert!(e1.unknowns().len() == 2);
}
fn const_expr(e: Expr) -> Option<Scalar> {
match e {
Expr::Const(c) => Some(c),
_ => None,
}
}
#[test]
fn test_solve() {
use Expr::*;
let _ = env_logger::try_init();
let u1 = Unknown(1);
let e1 = Unkn(u1);
let e2 = Const(1.);
let eqn = Eqn(e1.clone(), e2.clone());
assert_eq!(eqn.solve(u1), Some(Const(1.)));
let eqn = Eqn(e2.clone(), e1.clone());
assert_eq!(eqn.solve(u1), Some(Const(1.)));
let e3 = Expr::new_sum(Const(1.), Expr::new_sum(Const(1.), Const(2.)));
let eqn = Eqn(e1.clone(), e3.clone());
assert_eq!(eqn.solve(u1), Some(Const(4.)));
let e3 = Expr::new_minus(Const(1.), Const(1.));
let eqn = Eqn(e1.clone(), e3.clone());
assert_eq!(eqn.solve(u1), Some(Const(0.)));
let e1 = Expr::new_div(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_minus(Const(1.), Unkn(u1));
let eqn = Eqn(e1, e2);
info!("eqn: {} => {}", eqn, eqn.clone().simplify());
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), 5. / 3.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_minus(Expr::new_product(Unkn(u1), Const(2.)), Unkn(u1));
info!(
"e1==e2: {}=={} => {}=={}",
e1,
e2,
e1.clone().simplify(),
e2.clone().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -6.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_div(
Expr::new_sum(
Expr::new_product(Unkn(u1), Const(2.)),
Expr::new_product(Unkn(u1), Unkn(u1)),
),
Unkn(u1),
);
info!(
"{}=={} distrib=> {}=={}",
e1,
e2,
e1.clone().distribute(),
e2.clone().distribute()
);
info!(
"{}=={} simplify=> {}=={}",
e1,
e2,
e1.clone().distribute().simplify(),
e2.clone().distribute().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -8.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_div(
Expr::new_sum(
Expr::new_product(Unkn(u1), Const(2.)),
Expr::new_sum(
Expr::new_sum(Expr::new_product(Unkn(u1), Unkn(u1)), Unkn(u1)),
Expr::new_minus(Const(2.), Const(1. + 1.)),
),
),
Unkn(u1),
);
info!(
"e1==e2: {}=={} => {}=={}",
e1,
e2,
e1.clone().distribute().simplify(),
e2.clone().distribute().simplify().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -9.));
}
}
}

217
src/math/mod.rs

@ -0,0 +1,217 @@
pub mod solver;
pub type Scalar = f64;
pub type Vec2 = nalgebra::Vector2<Scalar>;
pub type Point2 = nalgebra::Point2<Scalar>;
pub type Rot2 = nalgebra::UnitComplex<Scalar>;
pub trait Region<T> {
fn full() -> Self;
fn singleton(value: T) -> Self;
fn nearest(&self, value: &T) -> Option<T>;
fn contains(&self, value: &T) -> bool;
}
#[derive(Clone, Debug)]
pub enum Region1 {
Empty,
Singleton(Scalar),
Range(Scalar, Scalar),
Union(Box<Region1>, Box<Region1>),
Full,
}
impl Region<Scalar> for Region1 {
fn full() -> Self {
Region1::Full
}
fn singleton(value: Scalar) -> Self {
Region1::Singleton(value)
}
fn contains(&self, n: &Scalar) -> bool {
use Region1::*;
match self {
Empty => false,
Singleton(n1) => relative_eq!(n1, n),
Range(l, u) => *l <= *n && *n <= *u,
Union(r1, r2) => r1.contains(n) || r2.contains(n),
Full => true,
}
}
fn nearest(&self, s: &Scalar) -> Option<Scalar> {
use Region1::*;
match self {
Empty => None,
Full => Some(*s),
Singleton(n) => Some(*n),
Range(l, u) => match (l < s, s < u) {
(true, true) => Some(*s),
(true, false) => Some(*u),
(false, true) => Some(*l),
_ => None,
},
Union(r1, r2) => {
let distance = |a: Scalar, b: Scalar| (a - b).abs();
match (r1.nearest(s), r2.nearest(s)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(*s, n1) <= distance(*s, n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
// line starting at start, point at angle dir, with range extent
// ie. start + (cos dir, sin dir) * t for t in extent
#[derive(Clone, Debug)]
pub struct Line2 {
start: Point2,
dir: Rot2,
extent: Region1,
}
impl Line2 {
pub fn new(start: Point2, dir: Rot2, extent: Region1) -> Self {
Self { start, dir, extent }
}
pub fn evaluate(&self, t: Scalar) -> Point2 {
self.start + self.dir * Vec2::new(t, 0.)
}
pub fn nearest(&self, p: &Point2) -> Point2 {
// rotate angle 90 degrees
let perp_dir = self.dir * Rot2::from_cos_sin_unchecked(0., 1.);
let perp = Line2::new(*p, perp_dir, Region1::Full);
if let Region2::Singleton(np) = self.intersect(&perp) {
np
} else {
panic!("Line2::nearest not found!");
}
}
pub fn intersect(&self, other: &Line2) -> Region2 {
// if the two lines are parallel...
let dirs = self.dir / other.dir;
if relative_eq!(dirs.sin_angle(), 0.) {
let starts = self.dir.to_rotation_matrix().inverse() * (other.start - self.start);
return if relative_eq!(starts.y, 0.) {
// and they are colinear
Region2::Line(self.clone())
} else {
// they are parallel and never intersect
Region2::Empty
};
}
// TODO: respect extent
let (a, b) = (self, other);
let (a_0, a_v, b_0, b_v) = (a.start, a.dir, b.start, b.dir);
let (a_c, a_s, b_c, b_s) = (
a_v.cos_angle(),
a_v.sin_angle(),
b_v.cos_angle(),
b_v.sin_angle(),
);
let t_b = (a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s);
Region2::Singleton(b.evaluate(t_b))
}
}
#[derive(Clone, Debug)]
pub enum Region2 {
Empty,
// single point at 0
Singleton(Point2),
Line(Line2),
#[allow(dead_code)]
Union(Box<Region2>, Box<Region2>),
Full,
}
impl Region<Point2> for Region2 {
fn full() -> Self {
Region2::Full
}
fn singleton(value: Point2) -> Self {
Region2::Singleton(value)
}
fn contains(&self, p: &Point2) -> bool {
self.nearest(p).map_or(false, |n| relative_eq!(n, p))
}
fn nearest(&self, p: &Point2) -> Option<Point2> {
use Region2::*;
match self {
Empty => None,
Full => Some(*p),
Singleton(n) => Some(*n),
Line(line) => Some(line.nearest(p)),
Union(r1, r2) => {
use nalgebra::distance;
match (r1.nearest(p), r2.nearest(p)) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some({
if distance(p, &n1) <= distance(p, &n2) {
n1
} else {
n2
}
}),
}
}
}
}
}
impl Region2 {
pub fn union(r1: Region2, r2: Region2) -> Region2 {
use Region2::*;
match (r1, r2) {
(Empty, r) | (r, Empty) => r,
(Full, _) | (_, Full) => Full,
(r1, r2) => Union(Box::new(r1), Box::new(r2)),
}
}
pub fn intersect(&self, other: &Region2) -> Region2 {
use Region2::*;
match (self, other) {
(Empty, _) | (_, Empty) => Empty,
(Full, r) | (r, Full) => r.clone(),
(Singleton(n1), Singleton(n2)) => {
if n1 == n2 {
Singleton(*n1)
} else {
Empty
}
}
(Singleton(n), o) | (o, Singleton(n)) => {
if o.contains(n) {
Singleton(*n)
} else {
Empty
}
}
(Line(l1), Line(l2)) => l1.intersect(l2),
(Union(un1, un2), o) | (o, Union(un1, un2)) => {
Self::union(un1.intersect(o), un2.intersect(o))
}
}
}
}

684
src/math/solver.rs

@ -0,0 +1,684 @@
use std::collections::{BTreeMap, BTreeSet};
use std::fmt;
use std::iter::FromIterator;
use crate::math::Scalar;
// an unknown variable with an id
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct Unknown(i64);
type UnknownSet = BTreeSet<Unknown>;
trait Unknowns {
fn unknowns(&self) -> UnknownSet;
fn has_unknowns(&self) -> bool;
fn has_unknown(&self, u: Unknown) -> bool;
}
impl Unknowns for Scalar {
fn unknowns(&self) -> UnknownSet {
UnknownSet::new()
}
fn has_unknowns(&self) -> bool {
false
}
fn has_unknown(&self, _: Unknown) -> bool {
false
}
}
impl Unknowns for Unknown {
fn unknowns(&self) -> UnknownSet {
FromIterator::from_iter(Some(*self))
}
fn has_unknowns(&self) -> bool {
true
}
fn has_unknown(&self, u: Unknown) -> bool {
*self == u
}
}
impl fmt::Display for Unknown {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "u{}", self.0)
}
}
#[derive(Clone, Debug, PartialEq)]
enum Expr {
Unkn(Unknown),
Const(Scalar),
Sum(Exprs),
Neg(Box<Expr>),
Product(Exprs),
Div(Box<Expr>, Box<Expr>),
}
type Exprs = Vec<Expr>;
impl Unknowns for Exprs {
fn unknowns(&self) -> UnknownSet {
self.iter().flat_map(|e: &Expr| e.unknowns()).collect()
}
fn has_unknowns(&self) -> bool {
self.iter().any(|e: &Expr| e.has_unknowns())
}
fn has_unknown(&self, u: Unknown) -> bool {
self.iter().any(|e: &Expr| e.has_unknown(u))
}
}
fn write_separated_exprs(es: &Exprs, f: &mut fmt::Formatter, sep: &str) -> fmt::Result {
let mut is_first = true;
for e in es {
if is_first {
is_first = false;
} else {
write!(f, "{}", sep)?
}
write!(f, "({})", e)?
}
Ok(())
}
fn remove_common_terms(l: &mut Vec<Expr>, r: &mut Vec<Expr>) -> Vec<Expr> {
let common: Vec<_> = l.drain_filter(|e| r.contains(e)).collect();
common.iter().for_each(|e| {
r.remove_item(e);
});
common
}
fn remove_term(terms: &mut Vec<Expr>, term: &Expr) -> Option<Expr> {
terms.remove_item(term)
}
fn sum_fold(l: Expr, r: Expr) -> Expr {
use itertools::Itertools;
use Expr::*;
match (l, r) {
(Const(lc), Const(rc)) => Const(lc + rc),
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 0.) => o,
(Product(mut l), Product(mut r)) => {
let comm = remove_common_terms(&mut l, &mut r);
Expr::new_product(Sum(comm), Expr::new_sum(Product(l), Product(r))).simplify()
}
(Product(mut l), r) | (r, Product(mut l)) => {
let comm = remove_term(&mut l, &r);
match comm {
Some(_) => {
Expr::new_product(r, Expr::new_sum(Product(l), Const(1.))).simplify()
}
None => Expr::new_sum(Product(l), r),
}
}
(l, r) => Expr::new_sum(l, r),
}
}
fn group_sum(es: Exprs) -> Exprs {
use Expr::*;
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
for e in es {
let unkns = e.unknowns();
match common.get_mut(&unkns) {
None => {
match e {
Const(c) if relative_eq!(c, 0.) => (),
e => {
common.insert(unkns, e);
}
};
}
Some(existing) => {
match existing {
Sum(ref mut es) => {
// already failed at merging, so just add it to the list
es.push(e);
}
other => {
*other = sum_fold(other.clone(), e);
}
};
}
};
}
common.into_iter().map(|(_, v)| v).collect()
}
fn product_fold(l: Expr, r: Expr) -> Expr {
use itertools::Itertools;
use Expr::*;
match (l, r) {
(Const(lc), Const(rc)) => Const(lc * rc),
(Const(c), o) | (o, Const(c)) if relative_eq!(c, 1.) => o,
(Div(num, den), mul) | (mul, Div(num, den)) => {
if mul == *den {
*num
} else {
Expr::Div(Box::new(Expr::Product(vec![*num, mul])), den).simplify()
}
}
(l, r) => Expr::new_product(l, r),
}
}
fn group_product(es: Exprs) -> Exprs {
use Expr::*;
let mut common: BTreeMap<UnknownSet, Expr> = BTreeMap::new();
for e in es {
let unkns = e.unknowns();
match common.get_mut(&unkns) {
None => {
match e {
Const(c) if relative_eq!(c, 1.) => (),
e => {
common.insert(unkns, e);
}
};
}
Some(existing) => {
match existing {
Sum(ref mut es) => {
// already failed at merging, so just add it to the list
es.push(e);
}
other => *other = product_fold(other.clone(), e),
};
}
};
}
common.into_iter().map(|(_, v)| v).collect()
}
fn distribute_product_sums(mut es: Exprs) -> Expr {
trace!("distribute_product_sums: {}", Product(es.clone()));
use itertools::Itertools;
use Expr::*;
let sums = es
.drain_filter(|e| match e {
Sum(_) => true,
_ => false,
})
.map(|e| {
trace!("sum in product: {}", e);
match e {
Sum(es) => es,
_ => unreachable!(),
}
});
let products: Vec<_> = sums.multi_cartesian_product().collect();
if products.is_empty() {
trace!("no sums to distribute");
return Product(es);
}
let sums = products
.into_iter()
.map(|mut prod| {
prod.extend(es.clone());
trace!("prod: {}", Product(prod.clone()));
Product(prod)
})
.collect();
Sum(sums)
}
impl Unknowns for Expr {
fn unknowns(&self) -> UnknownSet {
use Expr::*;
match self {
Unkn(u) => u.unknowns(),
Const(_) => UnknownSet::default(),
Sum(es) | Product(es) => es.unknowns(),
Div(l, r) => l.unknowns().union(&r.unknowns()).cloned().collect(),
Neg(e) => e.unknowns(),
}
}
fn has_unknowns(&self) -> bool {
use Expr::*;
match self {
Unkn(u) => u.has_unknowns(),
Const(_) => false,
Sum(es) | Product(es) => es.has_unknowns(),
Div(l, r) => l.has_unknowns() || r.has_unknowns(),
Neg(e) => e.has_unknowns(),
}
}
fn has_unknown(&self, u: Unknown) -> bool {
use Expr::*;
match self {
Unkn(u1) => u1.has_unknown(u),
Const(_) => false,
Sum(es) | Product(es) => es.has_unknown(u),
Div(l, r) => l.has_unknown(u) || r.has_unknown(u),
Neg(e) => e.has_unknown(u),
}
}
}
impl Expr {
fn new_sum(e1: Expr, e2: Expr) -> Expr {
Expr::Sum(vec![e1, e2])
}
fn new_product(e1: Expr, e2: Expr) -> Expr {
Expr::Product(vec![e1, e2])
}
fn new_neg(e1: Expr) -> Expr {
Expr::Neg(Box::new(e1))
}
fn new_div(num: Expr, den: Expr) -> Expr {
Expr::Div(Box::new(num), Box::new(den))
}
fn new_minus(e1: Expr, e2: Expr) -> Expr {
Expr::Sum(vec![e1, Expr::new_neg(e2)])
}
fn new_inv(den: Expr) -> Expr {
Expr::new_div(Expr::Const(1.), den)
}
fn is_zero(&self) -> bool {
use Expr::*;
match self {
Const(c) => relative_eq!(*c, 0.),
_ => false,
}
}
fn is_one(&self) -> bool {
use Expr::*;
match self {
Const(c) => relative_eq!(*c, 1.),
_ => false,
}
}
fn simplify(self) -> Expr {
use Expr::*;
match self {
Sum(es) => {
let mut new_es: Vec<_> = es
.into_iter()
.map(|e| e.simplify())
.flat_map(|e| match e {
Sum(more_es) => more_es,
other => vec![other],
})
.collect();
let pre_new_es = new_es.clone();
new_es = group_sum(new_es);
trace!(
"simplify sum {} => {}",
Sum(pre_new_es),
Sum(new_es.clone())
);
match new_es.len() {
0 => Const(0.), // none
1 => new_es.into_iter().next().unwrap(), // one
_ => Sum(new_es), // many
}
}
Product(es) => {
let new_es: Vec<_> = es
.into_iter()
.map(|e| e.simplify())
.flat_map(|e| match e {
Product(more_es) => more_es,
other => vec![other],
})
.collect();
let pre_new_es = new_es.clone();
let new_es = group_product(new_es);
trace!(
"simplify product {} => {}",
Product(pre_new_es),
Product(new_es.clone())
);
match new_es.len() {
0 => Const(1.), // none
1 => new_es.into_iter().next().unwrap(), // one
_ => Product(new_es), // many
}
}
Neg(mut v) => {
*v = v.simplify();
trace!("simplify neg {}", Neg(v.clone()));
match v {
box Const(c) => Const(-c),
box Neg(v) => *v,
e => Product(vec![Const(-1.), *e]),
}
}
Div(mut num, mut den) => {
*num = num.simplify();
*den = den.simplify();
trace!("simplify div {}", Div(num.clone(), den.clone()));
match (num, den) {
(box Const(num), box Const(den)) => Const(num / den),
(num, box Const(den)) => {
if relative_eq!(den, 1.) {
*num
} else {
Expr::new_product(*num, Const(1. / den))
}
}
(num, box Div(dennum, denden)) => {
Div(Box::new(Product(vec![*num, *denden])), dennum).simplify()
}
(box Product(mut es), box den) => match es.remove_item(&den) {
Some(_) => Product(es),
None => Expr::new_div(Product(es), den),
},
(num, den) => {
if num == den {
Expr::Const(1.)
} else {
Div(num, den)
}
}
}
}
e => e,
}
}
fn distribute(self) -> Expr {
use Expr::*;
trace!("distribute {}", self);
match self {
Sum(mut es) => {
for e in &mut es {
*e = e.clone().distribute();
}
Sum(es)
}
Product(es) => distribute_product_sums(es),
Div(mut num, mut den) => {
*num = num.distribute();
*den = den.distribute();
match (num, den) {
(box Sum(es), box den) => Sum(es
.into_iter()
.map(|e| Expr::new_div(e, den.clone()))
.collect()),
(mut num, mut den) => Div(num, den),
}
}
Neg(v) => match v {
// box Sum(mut l, mut r) => {
// *l = Neg(l.clone()).distribute();
// *r = Neg(r.clone()).distribute();
// Sum(l, r)
// }
// box Product(mut l, r) => {
// *l = Neg(l.clone()).distribute();
// Product(l, r)
// }
box Neg(v) => v.distribute(),
box Div(mut num, mut den) => {
*num = Neg(num.clone()).distribute();
*den = Neg(den.clone()).distribute();
Div(num, den)
}
e => Neg(e),
},
e => e,
}
}
}
impl fmt::Display for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use Expr::*;
match self {
Unkn(u) => write!(f, "{}", u),
Const(c) => write!(f, "{}", c),
Sum(es) => write_separated_exprs(es, f, " + "),
Product(es) => write_separated_exprs(es, f, " * "),
Div(num, den) => write!(f, "({}) / ({})", num, den),
Neg(e) => write!(f, "-({})", e),
}
}
}
#[derive(Clone, Debug, PartialEq)]
struct Eqn(Expr, Expr);
impl Unknowns for Eqn {
fn unknowns(&self) -> UnknownSet {
self.0
.unknowns()
.union(&self.1.unknowns())
.cloned()
.collect()
}
fn has_unknowns(&self) -> bool {
self.0.has_unknowns() || self.1.has_unknowns()
}
fn has_unknown(&self, u: Unknown) -> bool {
self.0.has_unknown(u) || self.1.has_unknown(u)
}
}
fn ord_by_unkn(a: Expr, b: Expr, u: Unknown) -> Option<(Expr, Expr)> {
if a.has_unknown(u) {
Some((a, b))
} else if b.has_unknown(u) {
Some((b, a))
} else {
None
}
}
impl Eqn {
fn simplify(self) -> Eqn {
Eqn(self.0.simplify(), self.1.simplify())
}
fn solve(&self, for_u: Unknown) -> Option<Expr> {
use Expr::*;
if !self.has_unknown(for_u) {
return None;
}
let (l, r) = (
self.0
.clone() /*.distribute()*/
.simplify(),
self.1
.clone() /*.distribute()*/
.simplify(),
);
let (mut l, mut r) = ord_by_unkn(l, r, for_u)?;
loop {
trace!("solve: {} == {}", l, r);
let (new_l, new_r): (Expr, Expr) = match l {
Unkn(u) => return if u == for_u { Some(r.simplify()) } else { None },
Sum(es) => {
let (us, not_us): (Vec<_>, Vec<_>) =
es.into_iter().partition(|e| e.has_unknown(for_u));
if us.len() != 1 {
return None;
}
(
Sum(us).simplify(),
Expr::new_minus(r, Sum(not_us)).simplify(),
)
}
Product(es) => {
let (us, not_us): (Vec<_>, Vec<_>) =
es.into_iter().partition(|e| e.has_unknown(for_u));
if us.len() != 1 {
return None;
}
(
Product(us).simplify(),
Expr::new_div(r, Product(not_us)).simplify(),
)
}
Neg(v) => (*v, Expr::new_neg(r)),
Div(num, den) => {
let (nu, du) = (num.has_unknown(for_u), den.has_unknown(for_u));
match (nu, du) {
(true, false) => (*num, Expr::new_product(r, *den)),
(false, true) => (Expr::new_product(r, *den), *num),
(true, true) => return None, // TODO: simplify
(false, false) => return None,
}
}
Const(_) => return None,
_ => return None,
};
l = new_l;
r = new_r;
}
}
}
impl fmt::Display for Eqn {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} == {}", self.0, self.1)
}
}
#[derive(Clone, Debug, PartialEq)]
struct Eqns(Vec<Eqn>);
impl Unknowns for Eqns {
fn unknowns(&self) -> UnknownSet {
self.0.iter().flat_map(|eqn: &Eqn| eqn.unknowns()).collect()
}
fn has_unknowns(&self) -> bool {
self.0.iter().any(|eqn: &Eqn| eqn.has_unknowns())
}
fn has_unknown(&self, u: Unknown) -> bool {
self.0.iter().any(|eqn: &Eqn| eqn.has_unknown(u))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_unknowns() {
let u1 = Unknown(1);
let u2 = Unknown(2);
let u3 = Unknown(3);
assert!(u1.has_unknowns());
assert!(u2.has_unknowns());
assert!(u1.has_unknown(u1));
assert!(!u1.has_unknown(u2));
assert!(u1.unknowns().contains(&u1));
assert!(!u2.unknowns().contains(&u1));
let e1 = Expr::new_minus(Expr::Unkn(u1), Expr::Unkn(u2));
assert!(e1.has_unknowns());
assert!(e1.has_unknown(u1));
assert!(e1.has_unknown(u2));
assert!(!e1.has_unknown(u3));
assert!(e1.unknowns().len() == 2);
}
fn const_expr(e: Expr) -> Option<Scalar> {
match e {
Expr::Const(c) => Some(c),
_ => None,
}
}
#[test]
fn test_solve() {
use Expr::*;
let _ = env_logger::try_init();
let u1 = Unknown(1);
let e1 = Unkn(u1);
let e2 = Const(1.);
let eqn = Eqn(e1.clone(), e2.clone());
assert_eq!(eqn.solve(u1), Some(Const(1.)));
let eqn = Eqn(e2.clone(), e1.clone());
assert_eq!(eqn.solve(u1), Some(Const(1.)));
let e3 = Expr::new_sum(Const(1.), Expr::new_sum(Const(1.), Const(2.)));
let eqn = Eqn(e1.clone(), e3.clone());
assert_eq!(eqn.solve(u1), Some(Const(4.)));
let e3 = Expr::new_minus(Const(1.), Const(1.));
let eqn = Eqn(e1.clone(), e3.clone());
assert_eq!(eqn.solve(u1), Some(Const(0.)));
let e1 = Expr::new_div(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_minus(Const(1.), Unkn(u1));
let eqn = Eqn(e1, e2);
info!("eqn: {} => {}", eqn, eqn.clone().simplify());
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), 5. / 3.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_minus(Expr::new_product(Unkn(u1), Const(2.)), Unkn(u1));
info!(
"e1==e2: {}=={} => {}=={}",
e1,
e2,
e1.clone().simplify(),
e2.clone().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -6.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_div(
Expr::new_sum(
Expr::new_product(Unkn(u1), Const(2.)),
Expr::new_product(Unkn(u1), Unkn(u1)),
),
Unkn(u1),
);
info!(
"{}=={} distrib=> {}=={}",
e1,
e2,
e1.clone().distribute(),
e2.clone().distribute()
);
info!(
"{}=={} simplify=> {}=={}",
e1,
e2,
e1.clone().distribute().simplify(),
e2.clone().distribute().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -8.));
let e1 = Expr::new_product(Const(2.), Expr::new_minus(Const(1.), Const(4.)));
let e2 = Expr::new_div(
Expr::new_sum(
Expr::new_product(Unkn(u1), Const(2.)),
Expr::new_sum(
Expr::new_sum(Expr::new_product(Unkn(u1), Unkn(u1)), Unkn(u1)),
Expr::new_minus(Const(2.), Const(1. + 1.)),
),
),
Unkn(u1),
);
info!(
"e1==e2: {}=={} => {}=={}",
e1,
e2,
e1.clone().distribute().simplify(),
e2.clone().distribute().simplify().simplify()
);
let eqn = Eqn(e1, e2);
let e = eqn.solve(u1).unwrap();
assert!(const_expr(e.clone()).is_some());
assert!(relative_eq!(const_expr(e.clone()).unwrap(), -9.));
}
}
Loading…
Cancel
Save