#include "ugv.hh" #include "ugv_comms.hh" #include "ugv_display.hh" #include "ugv_io.hh" namespace ugv { static const char *TAG = "ugv_main"; //#define CALIBRATE static constexpr float PI = 3.1415926535897932384626433832795028841971693993751058209749445923078164062; constexpr uint64_t LOOP_PERIOD_US = 1e6 / 100; constexpr float LOOP_HZ = 1000000.f / static_cast(LOOP_PERIOD_US); constexpr float LOOP_PERIOD_S = 1 / LOOP_HZ; constexpr TickType_t WATCHDOG_TICKS = pdMS_TO_TICKS(20 * 1000); constexpr uint64_t NOISE_PERIOD_US = 2000e3; constexpr float NOISE_PERIOD_S = static_cast(NOISE_PERIOD_US) * 1.e-6f; constexpr float ACCEL_NOISE_THRESHOLD = 0.001; constexpr float GYRO_NOISE_THRESHOLD = 0.3; void UpdateLocationFromGPS(comms::messages::Location &location, const io::GpsData &gps_data) { location.set_fix_quality(gps_data.fix_quality); location.set_latitude(gps_data.latitude); location.set_longitude(gps_data.longitude); location.set_altitude(gps_data.altitude); } extern "C" void UGV_TickTimeout(void *arg) { UGV *ugv = (UGV *)arg; ugv->OnTick(); } UGV::UGV() : angle_controller_(LOOP_PERIOD_S) { SetTarget({34.069022, -118.443067}); comms = new CommsClass(); io = new IOClass(); display = new DisplayClass(comms); SetConfig(DefaultConfig()); } config::Config UGV::DefaultConfig() { config::Config c; auto *apid = c.mutable_angle_pid(); apid->set_kp(0.06); apid->set_ki(0.01); apid->set_kd(0.4); apid->set_max_output(0.6); apid->set_max_i_error(15.0); c.set_min_target_dist(1.0); c.set_min_flip_pitch(90.0); c.set_drive_power(0.4); c.set_mag_declination(11.5); return c; } void UGV::SetConfig(const config::Config &conf) { auto &apid = conf.angle_pid(); angle_controller_.SetPID(apid.kp(), apid.ki(), apid.kd()); angle_controller_.MaxOutput(apid.max_output()); angle_controller_.MaxIError(apid.max_i_error()); conf_ = conf; } void UGV::SetTarget(LatLong target) { target_ = target; } void UGV::Init() { esp_timer_init(); ahrs_.begin(LOOP_HZ); // rough sample frequency io->Init(); comms->Init(); display->Init(); esp_timer_create_args_t timer_args; timer_args.callback = UGV_TickTimeout; timer_args.arg = this; timer_args.dispatch_method = ESP_TIMER_TASK; timer_args.name = "ugv_main_loop"; esp_timer_create(&timer_args, &this->timer_handle); esp_timer_start_periodic(timer_handle, LOOP_PERIOD_US); last_print_ = 0; last_noise_ = 0; last_left_ = 0; last_right_ = 0; } void UGV::UpdateAHRS() { io::Vec3f &g = inputs_.mpu.gyro_rate, &a = inputs_.mpu.accel, &m = inputs_.mpu.mag; ahrs_.update(g.x, g.y, g.z, a.x, a.y, a.z, m.x, m.y, m.z); yaw_ = ahrs_.getYaw() + conf_.mag_declination(); while (yaw_ > 360.) { yaw_ -= 360.; } while (yaw_ < 0.) { yaw_ += 360.; } pitch_ = ahrs_.getPitch(); roll_ = ahrs_.getRoll(); } void UGV::DoDebugPrint() { auto &mpu = inputs_.mpu; #ifdef CALIBRATE ESP_LOGD(TAG, "inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)", mpu.accel.x, mpu.accel.y, mpu.accel.z, mpu.gyro_rate.x, mpu.gyro_rate.y, mpu.gyro_rate.z, mpu.mag.x, mpu.mag.y, mpu.mag.z); #else ESP_LOGD(TAG, "inputs: acc=(%f, %f, %f) gyro=(%f, %f, %f) mag=(%f, %f, %f)", mpu.accel.x, mpu.accel.y, mpu.accel.z, mpu.gyro_rate.x, mpu.gyro_rate.y, mpu.gyro_rate.z, mpu.mag.x, mpu.mag.y, mpu.mag.z); ESP_LOGD(TAG, "ahrs: yaw=%f, pitch=%f, roll=%f", yaw_, pitch_, roll_); ESP_LOGV(TAG, "target angle: %f", angle_controller_.Setpoint()); #endif } void UGV::ReadComms() { comms->Lock(); UpdateLocationFromGPS(*(comms->status.mutable_location()), inputs_.gps); comms->status.set_yaw_angle(yaw_); comms->status.set_pitch_angle(pitch_); comms->status.set_roll_angle(roll_); comms->status.set_is_still(is_still_); UGV_State comms_ugv_state = comms->status.state(); TickType_t ticks_since_last_packet = (xTaskGetTickCount() - comms->last_packet_tick); if (ticks_since_last_packet >= WATCHDOG_TICKS && (comms_ugv_state != UGV_State::STATE_IDLE || current_state_ != UGV_State::STATE_IDLE)) { ESP_LOGW(TAG, "No comms for %f ticks, disabling", ticks_since_last_packet * (1000.f / pdMS_TO_TICKS(1000))); comms_ugv_state = UGV_State::STATE_IDLE; } if (comms_ugv_state != current_state_) { ESP_LOGI(TAG, "Comms updated UGV state to %d", comms_ugv_state); current_state_ = comms_ugv_state; } if (comms->new_target) { SetTarget(*comms->new_target); ESP_LOGI(TAG, "Updating target to (%f, %f)", target_.latitude, target_.longitude); delete comms->new_target; comms->new_target = nullptr; } if (comms->new_config) { ESP_LOGI(TAG, "Updating config"); SetConfig(*comms->new_config); delete comms->new_config; comms->new_config = nullptr; } comms->Unlock(); } void UGV::OnTick() { ESP_LOGV(TAG, "OnTick"); int64_t time_us = esp_timer_get_time(); float time_s = ((float)time_us) / 1e6; io->ReadInputs(inputs_); UpdateAHRS(); angle_controller_.Input(yaw_); float drive_power = 0.; outputs_.left_motor = 0.0; outputs_.right_motor = 0.0; float pitch = roll_; // TODO: fix quaternion -> YPR auto min_flip_pitch = conf_.min_flip_pitch(); bool is_upside_down = (pitch > min_flip_pitch) || (pitch < -min_flip_pitch); io::Vec3f d_accel = inputs_.mpu.accel - last_mpu_.accel; io::Vec3f d_gyro = inputs_.mpu.gyro_rate - last_mpu_.gyro_rate; last_mpu_ = inputs_.mpu; accel_noise_accum_ += d_accel.norm2() * LOOP_PERIOD_S; gyro_noise_accum_ += d_gyro.norm2() * LOOP_PERIOD_S; if (time_us >= last_noise_ + NOISE_PERIOD_US) { accel_noise_ = accel_noise_accum_ / NOISE_PERIOD_S; gyro_noise_ = gyro_noise_accum_ / NOISE_PERIOD_S; is_still_ = (accel_noise_ < ACCEL_NOISE_THRESHOLD) && (gyro_noise_ < GYRO_NOISE_THRESHOLD); ESP_LOGD(TAG, "is still: %s, accel noise: %f, gyro noise: %f", is_still_ ? "still" : "moving", accel_noise_, gyro_noise_); accel_noise_accum_ = 0; gyro_noise_accum_ = 0; last_noise_ = time_us; } ReadComms(); next_state_ = current_state_; switch (current_state_) { default: ESP_LOGW(TAG, "unhandled state: %d", current_state_); // fall through case UGV_State::STATE_IDLE: case UGV_State::STATE_FINISHED: angle_controller_.Disable(); break; case UGV_State::STATE_AQUIRING: { if (is_upside_down) { next_state_ = UGV_State::STATE_FLIPPING; break; } angle_controller_.Disable(); TickType_t current_tick = xTaskGetTickCount(); TickType_t ticks_since_gps = current_tick - inputs_.gps.last_update; bool not_old = ticks_since_gps <= pdMS_TO_TICKS(2000); bool not_invalid = inputs_.gps.fix_quality != io::GPS_FIX_INVALID; if (not_old && not_invalid) { next_state_ = UGV_State::STATE_TURNING; } break; } case UGV_State::STATE_FLIPPING: { angle_controller_.Disable(); outputs_.left_motor = 0.8; outputs_.right_motor = 0.8; if (!is_upside_down) { next_state_ = UGV_State::STATE_AQUIRING; break; } break; } case UGV_State::STATE_TURNING: { if (is_upside_down) { next_state_ = UGV_State::STATE_FLIPPING; break; } if (inputs_.gps.fix_quality == io::GPS_FIX_INVALID) { next_state_ = UGV_State::STATE_AQUIRING; break; } LatLong current_pos = {inputs_.gps.latitude, inputs_.gps.longitude}; float tgt_bearing = current_pos.bearing_toward(target_); angle_controller_.Enable(); angle_controller_.Setpoint(tgt_bearing); if (fabs(angle_controller_.Error()) <= 5.0) { next_state_ = UGV_State::STATE_DRIVING; } break; } case UGV_State::STATE_DRIVING: { if (is_upside_down) { next_state_ = UGV_State::STATE_FLIPPING; break; } if (inputs_.gps.fix_quality == io::GPS_FIX_INVALID) { next_state_ = UGV_State::STATE_AQUIRING; break; } LatLong current_pos = {inputs_.gps.latitude, inputs_.gps.longitude}; float tgt_dist = current_pos.distance_to(target_); if (tgt_dist <= conf_.min_target_dist()) { ESP_LOGI(TAG, "Finished driving to target"); next_state_ = UGV_State::STATE_FINISHED; break; } float tgt_bearing = current_pos.bearing_toward(target_); angle_controller_.Enable(); angle_controller_.Setpoint(tgt_bearing); drive_power = conf_.drive_power(); break; } case UGV_State::STATE_TEST: #define BASIC_TEST #ifdef BASIC_TEST outputs_.left_motor = sinf(time_s * PI); outputs_.right_motor = cosf(time_s * PI); #else angle_controller_.Enable(); angle_controller_.Setpoint(90.0); #endif break; case UGV_State::STATE_DRIVE_HEADING: angle_controller_.Enable(); angle_controller_.Setpoint(comms->drive_heading.heading()); drive_power = comms->drive_heading.power(); break; } if (angle_controller_.Enabled()) { float angle_pwr = angle_controller_.Update(); outputs_.left_motor = drive_power - angle_pwr; outputs_.right_motor = drive_power + angle_pwr; } constexpr float MAX_ACCEL = 16 * LOOP_PERIOD_S; if (inputs_.mpu.gyro_rate.x == 0 && inputs_.mpu.gyro_rate.y == 0 && inputs_.mpu.gyro_rate.z == 0) { outputs_.left_motor = 0; outputs_.right_motor = 0; did_miss_mpu_ = true; } else { float dleft = outputs_.left_motor - last_left_; float dright = outputs_.right_motor - last_right_; if (dleft > MAX_ACCEL) { outputs_.left_motor = last_left_ + MAX_ACCEL; } else if (dleft < -MAX_ACCEL) { outputs_.left_motor = last_left_ - MAX_ACCEL; } if (dright > MAX_ACCEL) { outputs_.right_motor = last_right_ + MAX_ACCEL; } else if (dright < -MAX_ACCEL) { outputs_.right_motor = last_right_ - MAX_ACCEL; } } io->WriteOutputs(outputs_); last_left_ = outputs_.left_motor; last_right_ = outputs_.right_motor; if (current_state_ != next_state_) { ESP_LOGI(TAG, "switching state to %d", next_state_); } comms->Lock(); comms->status.set_state(next_state_); comms->Unlock(); #ifdef CALIBRATE const long debug_print_period = 50 * 1000; #else const long debug_print_period = 500 * 1000; #endif if (time_us >= last_print_ + debug_print_period) { if (did_miss_mpu_) { ESP_LOGW(TAG, "no MPU data, disabling"); did_miss_mpu_ = false; } DoDebugPrint(); last_print_ = time_us; } } UGV *the_ugv; void Start(void) { ESP_LOGI(TAG, "Starting UAS UGV"); the_ugv = new UGV(); the_ugv->Init(); ESP_LOGI(TAG, "Setup finished"); } } // namespace ugv