pub mod eqn; pub type Scalar = f64; pub type Vec2 = nalgebra::Vector2; pub type Point2 = nalgebra::Point2; pub type Rot2 = nalgebra::UnitComplex; pub trait Region { fn full() -> Self; fn singleton(value: T) -> Self; fn nearest(&self, value: &T) -> Option; fn contains(&self, value: &T) -> bool; } #[derive(Clone, Debug)] pub enum Region1 { Empty, Singleton(Scalar), Range(Scalar, Scalar), Union(Box, Box), Full, } impl Region for Region1 { fn full() -> Self { Region1::Full } fn singleton(value: Scalar) -> Self { Region1::Singleton(value) } fn contains(&self, n: &Scalar) -> bool { use Region1::*; match self { Empty => false, Singleton(n1) => relative_eq!(n1, n), Range(l, u) => *l <= *n && *n <= *u, Union(r1, r2) => r1.contains(n) || r2.contains(n), Full => true, } } fn nearest(&self, s: &Scalar) -> Option { use Region1::*; match self { Empty => None, Full => Some(*s), Singleton(n) => Some(*n), Range(l, u) => match (l < s, s < u) { (true, true) => Some(*s), (true, false) => Some(*u), (false, true) => Some(*l), _ => None, }, Union(r1, r2) => { let distance = |a: Scalar, b: Scalar| (a - b).abs(); match (r1.nearest(s), r2.nearest(s)) { (None, None) => None, (Some(n), None) | (None, Some(n)) => Some(n), (Some(n1), Some(n2)) => Some({ if distance(*s, n1) <= distance(*s, n2) { n1 } else { n2 } }), } } } } } // line starting at start, point at angle dir, with range extent // ie. start + (cos dir, sin dir) * t for t in extent #[derive(Clone, Debug)] pub struct Line2 { start: Point2, dir: Rot2, extent: Region1, } impl Line2 { pub fn new(start: Point2, dir: Rot2, extent: Region1) -> Self { Self { start, dir, extent } } pub fn evaluate(&self, t: Scalar) -> Point2 { self.start + self.dir * Vec2::new(t, 0.) } pub fn nearest(&self, p: &Point2) -> Point2 { // rotate angle 90 degrees let perp_dir = self.dir * Rot2::from_cos_sin_unchecked(0., 1.); let perp = Line2::new(*p, perp_dir, Region1::Full); if let Region2::Singleton(np) = self.intersect(&perp) { np } else { panic!("Line2::nearest not found!"); } } pub fn intersect(&self, other: &Line2) -> Region2 { // if the two lines are parallel... let dirs = self.dir / other.dir; if relative_eq!(dirs.sin_angle(), 0.) { let starts = self.dir.to_rotation_matrix().inverse() * (other.start - self.start); return if relative_eq!(starts.y, 0.) { // and they are colinear Region2::Line(self.clone()) } else { // they are parallel and never intersect Region2::Empty }; } // TODO: respect extent let (a, b) = (self, other); let (a_0, a_v, b_0, b_v) = (a.start, a.dir, b.start, b.dir); let (a_c, a_s, b_c, b_s) = ( a_v.cos_angle(), a_v.sin_angle(), b_v.cos_angle(), b_v.sin_angle(), ); let t_b = (a_0.x * a_s - a_0.y * a_c + a_0.x * a_s + b_0.y * a_c) / (a_s * b_c - a_c * b_s); Region2::Singleton(b.evaluate(t_b)) } } #[derive(Clone, Debug)] pub enum Region2 { Empty, // single point at 0 Singleton(Point2), Line(Line2), #[allow(dead_code)] Union(Box, Box), Full, } impl Region for Region2 { fn full() -> Self { Region2::Full } fn singleton(value: Point2) -> Self { Region2::Singleton(value) } fn contains(&self, p: &Point2) -> bool { self.nearest(p).map_or(false, |n| relative_eq!(n, p)) } fn nearest(&self, p: &Point2) -> Option { use Region2::*; match self { Empty => None, Full => Some(*p), Singleton(n) => Some(*n), Line(line) => Some(line.nearest(p)), Union(r1, r2) => { use nalgebra::distance; match (r1.nearest(p), r2.nearest(p)) { (None, None) => None, (Some(n), None) | (None, Some(n)) => Some(n), (Some(n1), Some(n2)) => Some({ if distance(p, &n1) <= distance(p, &n2) { n1 } else { n2 } }), } } } } } impl Region2 { pub fn union(r1: Region2, r2: Region2) -> Region2 { use Region2::*; match (r1, r2) { (Empty, r) | (r, Empty) => r, (Full, _) | (_, Full) => Full, (r1, r2) => Union(Box::new(r1), Box::new(r2)), } } pub fn intersect(&self, other: &Region2) -> Region2 { use Region2::*; match (self, other) { (Empty, _) | (_, Empty) => Empty, (Full, r) | (r, Full) => r.clone(), (Singleton(n1), Singleton(n2)) => { if n1 == n2 { Singleton(*n1) } else { Empty } } (Singleton(n), o) | (o, Singleton(n)) => { if o.contains(n) { Singleton(*n) } else { Empty } } (Line(l1), Line(l2)) => l1.intersect(l2), (Union(un1, un2), o) | (o, Union(un1, un2)) => { Self::union(un1.intersect(o), un2.intersect(o)) } } } }